LLM-VeriOpt: Verification-Guided Reinforcement

via Z WA

Learning for LLM-Based Compiler Optimization

Xiangxin Fang
University of Edinburgh
Queen Mary University of London”
United Kingdom
jp2019213661 @gmul.ac.uk

Jiagin Kang

Rodrigo Rocha Sam Ainsworth

Queen Mary University of London University of Edinburgh” University of Edinburgh
United Kingdom
k.jiagin@se24.qmul.ac.uk

United Kingdom
sam.ainsworth@ed.ac.uk

United Kingdom

Lev Mukhanov
Queen Mary University of London
United Kingdom
l.mukhanov@qmul.ac.uk

Abstract—Large Language Models (LLMs) for compiler opti-
mization have recently emerged as a frontier research direction,
with many studies demonstrating their potential to automate and
improve low-level code transformations. While various techniques
have been proposed to enhance LLMs’ ability to optimize LLVM
IR or assembly code, ensuring the semantic equivalence of
transformed instructions remains a fundamental prerequisite
for safe and effective performance improvement. At the same
time, code generated by LLMs is often so far away from being
correct that it is very difficult to work out how to improve them
to proceed in generating optimizations using the output.

In this work, we present LLM-VeriOpt, a novel reinforcement-
learning methodology that incorporates feedback from a formal
verifier, Alive2, to guide the training of a small-scale model,
Qwen-3B. This facilitates the use of Guided Reinforcement via
Group Relative Policy Optimization (GRPO), using semantic-
equivalence signals from the Alive2 formal verification tool as
part of the reward function. This allows the model to self-correct
based on observing and subsequently learning to give correctness
feedback during training, giving high code coverage by successfully
transforming large amounts of code, while also optimizing it
significantly.

We demonstrate our technique by designing an LLM-based
peephole optimizer over LLVM-IR. Our method significantly
improves the correctness of IR optimizations versus the base
LLM Qwen-3B applied with just a prompt and no fine-tuning —
achieving a 5.4 x improvement in code successfully modified. The
resulting model produces verifiably correct output 90% of the
time, comfortably outperforming larger state-of-the-art LLMs,
including Meta’s LLM Compiler. This yields speedups of 2.3x
over O0-optimized code, comparable to the handwritten LLVM
—instcombine pass, and producing emergent optimizations that
outperform it in 20% of cases.

Index Terms—Optimizing Compilers, Large Language Models

I. INTRODUCTION

Modern compilers such as LLVM have accumulated decades
of engineering expertise in order to deliver reliable optimiza-
tions over compiler intermediate representations (IR). However,
they remain constrained by manually designed heuristics and
fixed pass pipelines (e.g., LLVM -03), which limit exploration

" Affiliation at time of research.

979-8-3315-9288-2/26 © 2026 IEEE

of the vast transformation space and prevent convergence to
globally optimal code []1].

To overcome this bottleneck, researchers have begun to
explore machine-learning—based methods to automatically
discover better optimization sequences, giving rise to the field
of AI for Compiler Optimization. For example, CompilerGym
[2] provides a scalable reinforcement learning environment for
addressing the problem of LLVM pass ordering.

In recent years, Large Language Models (LLMs) have shown
potential in generating novel compiler optimizations. Cummins
et al. [3] conducted large-scale autotuning experiments to
approximate the optimal pass sequence for each program, and
then applied supervised fine-tuning (SFT) to train LLMs to
predict these sequences. Their LLM-Compiler FTD model [4]
outperformed LLVM -Oz in terms of binary size, with the 13-
billion-parameter (13B) model producing smaller binaries in
61% of programs. Recent studies also show that incorporating
reasoning [S], [6] into LLM prompts improves optimization
accuracy and effectiveness.

Beyond pass ordering, finer-grained optimization tasks
have been investigated. Several authors [7]-[9] attempt to
go directly from language (e.g., C/C++) to target output
assembly (e.g., x86). Wei et al. [[7]] leverage proximal policy
optimization [[10] reinforcement learning with Qwen-7B [11] to
optimize assembly code. This achieves correctness in 96% of
the cases (matches behavior of finite input-output samples) and
achieves an average speedup of 1.47x, surpassing the gcc -O3
baseline, though relies on the actual -O3 code being included
in the prompt, otherwise degrading to 0% accuracy. LLM
Compiler’s [[12] Compiler Emulation task compiles (reports no
syntax error) LLVM-IR to optimized LLVM-IR with 95.6%
success, but with only 20% exact-match accuracy.

Such techniques suffer from a critical limitation: they do not
strictly guarantee the semantic correctness of the transformed
code. In most prior work [7]], [[12]], correctness was assessed
mainly through finite test suites (equivalence of input-output
pairs over a set of samples, or I/O equivalence), which only
approximate equivalence by testing a finite portion of the

740

Accepted for publication by IEEE. © 2026 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/ republishing
this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.


https://dl.acm.org/doi/10.5281/zenodo.17672452

input domain rather than providing a formal guarantee. This
overestimates correctness; LLM-Vectorizer [|13]] demonstrates
many cases where formal verification shows inequivalence
of 1/O-verified samples. In contrast, traditional compilers
ensure deterministic equivalence, whereas LLMs are prone
to hallucinations [14]] that may generate invalid or inconsistent
IR and assembly. This correctness gap represents the main
barrier to deploying LLMs in practical compiler optimization.

LLM-Vectorizer [|13]] targets the task of vectorization. It
points out that, because it transforms LLVM-IR (intermediate
representation) to LLVM-IR, it is able to use the formal
equivalency checker Alive2 [15]] to reject incorrect samples,
verifying 38% of the LLM’s attempts as correct — and allows
the use of existing compiler infrastructure to perform the
transformations from input language to LLVM-IR, and LLVM-
IR to assembly. This is a facilitating observation, as it means
that, on tasks that output LLVM-IR, it is always possible to
either verify correctness formally, or return the original code
on a timeout or equivalence mismatch, meaning the LLM need
no longer be trusted. Still, if the LLM is rarely able to output
(verifiably) correct code, then the ability to optimize is severely
impacted by the remaining unchanged code.

Reinforcement learning with verifiable rewards (RLVR) [[16]-
[18] has recently emerged as a promising method for enabling
the self-improvement of LLMs in domains that demand
structured reasoning. Within this framework, Group Relative
Policy Optimization (GRPO) [19] has shown particular promise.
Recent studies have demonstrated its effectiveness in tasks
such as mathematical reasoning [19], where reaching correct
solutions requires multi-step logical reasoning. Compiler op-
timization represents an analogous domain: transformations
must follow rigorous reasoning principles and can be formally
validated. Despite this strong alignment, GRPO has not yet
been explored in this setting.

In this work, we propose LLM-VERIOPT, a reinforcement-
learning framework that integrates Alive2’s semantic equiva-
lence checks into GRPO itself. Alive2 provides trustworthy
verification feedback, which we leverage both as a reward
signal and as learned diagnostic feedback incorporated into
training prompts. This design enables our small-scale model
(Qwen-3B [20], 3-billion parameters) to constantly learn from
counterexamples throughout training, and, combined with also
using Alive2 to verify LLVM-IR code at the backend [13]],
gives the potential to not only produce verified code, but to
correct its own mistakes.

We focus on —instcombine [21] in LLVM: the compiler’s
peephole optimization pass. It performs algebraic simplifi-
cations and local transformations within each basic block,
combining multiple instructions into more efficient forms. This
pass is particularly well-suited for LLM-based approaches:
it operates on short instruction sequences, mitigating the
limitations of LLMs in handling large context windows [3|].
Moreover, since -instcombine serves as the foundation for more
advanced optimizations, ensuring correctness at this level is
a prerequisite for scaling LLMs to broader compiler tasks.
To evaluate and train our technique over code known to be

challenging to compile correctly, we analyze C/C++ programs
from both the LLVM and GCC test suites.

The main goal of this work is to bridge the correctness
gap in LLM-based compiler optimization by developing
a reinforcement learning framework that integrates formal
verification feedback. Specifically, we show that, with assistance
from formal verifiers, a small-scale LLM can reliably perform
LLVM IR optimizations that are both semantically correct
and efficient, thereby improving reliability beyond supervised
fine-tuning and surpassing the performance of state-of-the-art
models that are orders of magnitude larger.

Our contributions are as follows:

e We introduce LLM-VERIOPT, a novel framework for
verified IR peephole optimization. It builds on Group
Relative Policy Optimization (GRPO) and integrates
Alive2 formal verification feedback directly into the
reward function, thereby guiding reinforcement learning
with semantic correctness guarantees.

« We construct a novel training scheme consisting of four
progressive models: a MODEL-ZERO to analyze LLM-
specific mistakes, a WARM-UP MODEL to bootstrap
the process of training the LLM to generate code and
diagnose its own mistakes, a MODEL-CORRECTNESS
that uses reinforcement learning to optimize towards
generating easily verifiable transformations via generating
progressively higher quality diagnostics, and a MODEL-
LATENCY that preserves highly verifiable transformations
while generating emergent optimization capability.

o We evaluate on a dataset constructed of C/C++ programs
from the LLVM and GCC test suites [22], [23]. We
demonstrate that our method substantially improves the
correctness and optimization performance of a small-scale
model (Qwen-3B [20]), going from producing new correct
code less than 20% of the time with only 0.2% speedup to
one that produces new correct code 90% of the time and
achieves 2.30x speedup. This comfortably outperforms
larger state-of-the-art LLMs, and is comparable to the
real handwritten —instcombine pass (2.39x) while
demonstrating emergent capabilities by producing superior
optimizations 20% of the time.

II. PRELIMINARIES
A. Compiler and LLVM IR:

LLVM [24], a widely used industrial compiler infrastruc-
ture, represents and transforms programs in an intermediate
representation (LLVM IR) that is low-level enough to capture
hardware details while remaining target-independent.

Peephole optimization is a classical compiler technique
that replaces instruction sequences with logically equivalent
but more efficient forms [25]]. Typical categories include
null sequence elimination, combining operations, algebraic
simplifications, address mode optimizations, and the use of
special-case instructions [26]. These local transformations are
widely adopted across compilers, as they provide lightweight
performance improvements while preserving correctness.

741



In LLVM, the canonical realization of peephole optimization
is the —instcombine pass, which implements thousands
of such algebraic and local transformations [24]. It is a
fundamental component of LLVM’s optimization pipeline and
serves as the foundation for more advanced passes. Given the
context-length limitations of current large language models
[3], ~instcombine provides an ideal setting for training
LLMs: the optimization opportunities are local, and instruction
sequences are relatively short, though complexity lies in the
sheer number of optimizations included [27].

B. Supervised Fine-Tuning (SFT).

SFT [28] refers to standard supervised training of the base
model on (input, target) pairs, without reinforcement learning
or preference optimization. In our setting, the target is the
reference IR produced by LLVM’s —instcombine pass. We
use SFT as a baseline to evaluate how much improvement
GRPO with Alive2 feedback can provide.

C. PPO vs. GRPO.

Proximal Policy Optimization (PPO) [10] is the standard
reinforcement-learning algorithm used in aligning large lan-
guage models [29]. However, PPO relies on a separate value
network to estimate absolute reward signals, which introduces
additional model complexity and training overhead. In contrast,
Group Relative Policy Optimization (GRPO) [|19] eliminates
the need for a value model by directly comparing multiple
candidate outputs from the same prompt and assigning rewards
based on their relative quality. This design makes GRPO
particularly suited for tasks where feedback is binary or
comparative, such as semantic-equivalence verification.

D. Semantic Equivalence Verification:

Alive2 [15] is an automatic translation-validation tool for
LLVM IR that provides formal guarantees of semantic equiva-
lence between optimized and unoptimized programs. Alive2
relies on SMT (Satisfiability Modulo Theories) solvers which
translate program instructions into algebraical expressions
to check sematic equivalence using SAT or simplex-like
algorithms [13[], [30]-[32]]. Alive2 is widely regarded [/13],
[301-[32]] in the research community as the most practical and
robust translation validation tool for LLVM IR.

Beyond equivalence judgments, Alive2 also provides de-
tailed diagnostic feedback, including syntax-level parsing errors
and semantic mismatches between input and optimized IR. In
our framework, we incorporate error messages into subsequent
training prompts, enabling the model to learn directly from
verification failures.

E. Prompting Setup (Generic Template).

An illustration of the generic prompt template we use for all
comparisons is shown in Fig. |l We extend this where relevant
for GRPO models that can generate their own intermediate
Chain of Thought (CoT) steps as shown in section For
supervised fine-tuning (SFT), which cannot reliably do this,
and our GRPO baseline without prompt augmentation, the
simple prompt here is used directly, unless otherwise noted.

Generic Prompt

<|im_start|>system

You are a helpful Al Assistant that optimizes LLVM IR.
This is a single-turn interaction.

IMPORTANT: The primary objective is to MINIMIZE
LATENCY while keeping the code complete, compilable
semantically equivalent to the input, and preserving all
metadata.

Respond in the following format:

<answer>

- complete optimized LLVM IR

</answer>

<|im_end|>

<|im_start|>user

{Non-optimized IR}

<|im_end|>

<|im_start|>assistant

Fig. 1: Generic prompt template used for SFT and baseline
GRPO (without augmentation).

We ask the LLM to optimize a full function at a time;
likewise, we verify a full function at a time using Alive2.
We found that liveness information between basic blocks is
unavailable to the LLM if it only sees one block at a time. The
same issue does not exist between functions, where input and
output are controlled via strict interfaces, and so by processing
larger blocks of code at once, we give the LLM sufficient
information to solve the problem.

III. LLM-VERIOPT: GRPO WITH ALIVE2 VERIFICATION

Here we present LLM-VERIOPT, our novel reinforcement-
learning methodology. LLM-VERIOPT integrates Alive2’s
semantic equivalence checker into the GRPO framework, which
enables the model (i) to optimize toward transformations
that Alive2 can prove correct, and (ii) to directly learn from
diagnostic-augmented samples that expose invalid optimiza-
tions. Building on this, we construct a hierarchy of models that
are iteratively trained toward a latency-optimizing solution:

« A MODEL ZERO to bootstrap the process of training
augmented prompts with failure modes tailored towards
the exact failures the underlying LLM makes. The inter-
mediate output of the GRPO process, used to optimize
towards accuracy, produces a wide dataset of failures, and
combined with Alive2, the reasons for them.

e A WARM-UP MODEL generated via supervised fine-
tuning (SFT) that mimics the process of providing Alive2
feedback on its own optimized output. This takes both
the original —~instcombine training set and MODEL
ZERO’s failures, and tries to produce either a) the correct
answer directly, or b) the wrong answer, an Alive2-style
explanation, followed by the correct answer.

¢ A GRPO-optimized MODEL-CORRECTNESS that maxi-
mizes the chance of generating a correct transformation.
This iteratively trains both the Alive2 feedback emulation

742



and the code-generation phases, such that error detection
and correction gradually improve. This continues to the
degree that ultimately no explicit error correction is
needed, as it produces the right answer the first time
by learning to avoid its common errors in the first place.
o Finally, a MODEL-LATENCY that preserves the accuracy
of MODEL-CORRECTNESS while changing optimization
criteria to explore and improve the performance of
optimized code, while preserving semantic equivalence but
removing incentives to exactly match —instcombine.

A. Optimization towards Verifiably Correct Transformations

For each non-optimized IR, the policy generates
multiple candidate transformations. We form pairs
(Non-optimized, Candidate) and query Alive2 for semantic
equivalence. Alive2 outcomes are incorporated into GRPO
training as reward signals.

The overall reward is defined in a hierarchical manner.

r; = ti<1 n ai(leri)) + b, )
where
t; € {0,1}, completion-format compliance,
a; € {0,1}, Alive2 semantic equivalence,
m; € {0,1}, exact match with the reference IR,
b; €10,1], BLEU [33] similarity score.

The intuition is that a) correctness is highest priority to
generate LLM-optimized code that can be externally verified
with non-negligible chance, b) the function is continuous
as a result of using BLEU scores [33]], so that there is a
steady incentive gradient for learning on, c) both similarity
to InstCombine, and latency-reduction on code are used as
tiebreakers whenever the code is correct, to disincentivize the
input being returned as output. To be specific, outputs are
required to satisfy the specified prompt format (¢;), semantic
correctness is determined through Alive2 verification (a;), and
exact matches with the reference IR (m;) are credited only
when equivalence holds. The BLEU score [33] (b;), based on
the similarity of code and where a score of 1 indicates an exact
match, offers feedback for partially correct outputs and thus
alleviates the sparsity of purely discrete rewards, providing a
continuous shaping signal to mitigate gradient starvation [34].

Producing correct (or optimized) code is not the same thing
as producing identical code to —instcombine, and thus
attempting to match it only forms part of the reward (via BLEU
similarity and exact-match score). We reward alternatives that
are (verifiably, via Alive2) correct as being superior to incorrect
answers, and exact mimicry as superior to alternative semantic
matches. Entirely incorrect output formats are least rewarded,
and matches that are not semantically equivalent but are partly

similar to —instcombine get partial credit by BLEU scoring.

This basic correctness reward is reused in various forms
throughout our training pipeline: to incentivize producing
correct code, to incentivize producing correct error messages
when the code is wrong, and to incentivize producing correct
corrections to wrong code in response to error messages. These

are explored further in future sections. In addition, we also
introduce rewards to optimize correct code to choose more
preferable optimizations from the wide set of correct answers
once we have a reliable LLM in section

B. Learning from Diagnostic Information

Beyond serving as a correctness oracle, Alive2 also produces
diagnostic information that we incorporate into training. These
messages allow us to emulate Alive2-style diagnostic feedback,
which in turn guides the model toward generating more correct
output. For each failed pair (Non-optimized, Candidate), Alive2
returns diagnostic feedback, which we combine with the input
IR, the incorrect candidate, and the reference label (from
—instcombine) to form diagnostic-augmented samples for
training.

Fig. [2] shows this augmented prompt format. We extend the
generic prompt from section [[I-E| by introducing the <think>
tag and embedding the Alive2-diagnostic-augmented samples
(first attempt and error message if wrong) within this section,
so that the model is exposed to diagnostic feedback during
training. The output of this prompt can take two forms: either
a direct, correct answer in a single attempt with an emulated
Alive2 successful equivalence, or an incorrect answer, followed
by a diagnostic error message. Both are followed by a final
corrected answer. We prefer the correct answer first-time, but
partially reward the wrong answer followed by correction, in
order to bootstrap our GRPO models to progressively become
more able to generate the former as they learn to diagnose
bugs via generating the latter. This modified prompt is used
for our two intermediate models: the WARM-UP MODEL and
MODEL CORRECTNESS (section [[II-C2).

C. Training Pipeline

Figure [3| presents a detailed overview of our training
pipeline. The entire process starts from the pretrained
Qwen2.5-3B-Instruct [20] base model. The pipeline is
organized into three main stages and four models:

1) Diagnostic-augmented Sample Generation (Stage 1): A
direct application of GRPO on the small-scale foundation model
often collapses due to the sparsity of positive rewards: most
candidate optimizations fail Alive2 checks and provide little
useful gradient (section [V-D). To address this, we deliberately
run an initial GRPO phase using the generic prompt (fig. [I) to
obtain a preliminary policy, denoted MODEL ZERO, following
DeepSeek [35]. Although not a satisfactory optimizer, MODEL
ZERO plays a crucial role as a diagnostic-augmented sample
generator. Rather than using MODEL ZERO itself, we observe
the GRPO training space while producing it and, through
Alive2 validation, produce concrete diagnostic information
based on the intermediate outputs. Importantly, these diagnostic-
augmented samples are model-adaptive: they directly reflect
the systematic weaknesses of Qwen-3B when applied to IR
optimization. By reinjecting them into the training process
as Augmented Prompts (fig. [2), with wrong code, diagnostics,
and the correct output (correction-augmented samples) along

743



Augmented Prompt

<|im_start|>system...
Respond in the following format: <think><think><answer></answer>
<|im_start|>user

{Non-optimized LLVM-IR}
<|im_start|>assistant

First-time augmented samples

Diagnostic-Augmented Samples

[1] Candidate IR:
define dso_local i32 @test2(i32 noundef %0) { ... }

error: multiple definition of local value named 'storemerge’ Eagn_osﬁ: |
|%storemerge = phi i8 [ %4, %3 ], [ %storemerge, %5 |
[4] Revised IR (from Reference Label):

define dso_local i32 @test2(i32 noundef %0) { ... }

[5] Check (final):

Passed (semantically equivalent).

<think> )

[1] Candidate IR (from Reference Label)
</think> (x define dso_local i32 @test2 ...
<answer> .

{Corrected LLVM-IR} [2] Check (final): _
</answer> Passed (semantically equivalent).

Fig. 2: We train the LLM to generate diagnostic error messages based on its initial mistakes, and produce corrected output
based on the result. The initial dataset of diagnostic-augmented samples is generated by the wrong answers produced by an
attempt to apply GRPO directly to Qwen-3B with the generic prompt (fig. [I)), Alive2’s response to them, and the actual intended
—instcombine output. The wrong attempt, and the error diagnosis are inside the <think> block. The corrected answer is
inside the <answer> block. We also include samples of the original O0-instcombine pairs, with the —~instcombine answer
inside the think block and as the output, to represent the preferred case when the LLM gets the answer right first time.

‘ Stage 3

b e e — o — — —

|
| | | :
|
| Qwen 3B Generic : f—)[ SFT } [ Generic [
| Prompt | ¢ | Prompt [
| | | ¢ l
| | Warm-up Model | I
| GRPO with Overall | ¢ | GRPO with Latency !
| Reward | | Reward '
I . |
: ! ’_)L GRPO with CoT RewardJ : l |
|
I Diagnostic- I + { :
|
Model Zero Augmented : Model-Correctness Model-Latency |
| Prompt | I
! I

Fig. 3: The training pipeline: from MODEL ZERO (diagnostic-augmented sample generator) and WARM-UP MODEL (SFT on
diagnostic-augmented samples), through GRPO with augmented prompts to obtain MODEL-CORRECTNESS, and subsequent

incremental learning yielding the final MODEL-LATENCY.

with the original training data of O0-instcombine pairs (first-
time augmented samples), we enrich the otherwise sparse
supervision with error signals that are maximally relevant to the
model itself, laying the foundation for subsequent correctness-
oriented training.

2) Correctness-Oriented Training (Stage 2): Even with
augmented prompts, directly applying GRPO remains unstable
because the foundation model lacks basic error-recognition
capability. In particular, it cannot reliably distinguish invalid
or semantically incorrect IRs, nor can it produce diagnostic
information that explains why the output fails verification.
We therefore introduce a Warm-up stagcﬂ supervised fine-
tuning (SFT) on the augmented prompts, in order to emulate
the response of Alive2 inside the decision-making process.
The WARM-UP MODEL equips the policy with rudimentary
diagnostic skills and serves as a stronger initializer. The input to
the Warm-up stage’s SFT are the augmented samples described
in fig. 2} both first-time augmented samples, which get the
answer right immediately, and correction-augmented samples
that get the answer wrong, diagnose it, and then correct it.

I'This mirrors the strategy in AlphaGo , where supervised initialization
provides a reliable policy prior to reinforcement learning.

For each code input, there will be one first-time augmented
sample and potentially several correction-augmented samples
depending on how many different ways the GRPO training of
MODEL ZERO failed. The WARM-UP MODEL is not trained
with any preference between these, outputting whichever of
these several possible outputs is easiest for it to generate.

Building on this, we apply GRPO with augmented prompts,
guiding the model to autonomously generate improved candi-
date IRs and improved validation of their semanticsﬂ This stage
culminates in MODEL-CORRECTNESS, a policy optimized to
maximize Alive2-verified semantic equivalence. As shown in
Figure [f{a), correctness steadily improves as GRPO progresses
from the WARM-UP MODEL.

Just as in the training data, the correct answer can be derived
either from getting the answer right immediately inside the
<think> block (as in the first-time samples), or getting the
answer wrong inside the think block, correctly diagnosing the
issue, then fixing it (as in the correction samples). This creates
a joint optimization between rewarding a) correct optimization
in one shot, b) correct diagnostic information when the first

2As new types of error appear as the LLM gets gradually better at producing
code, Alive2 is constantly reconsulted and learned from.

744



attempt is wrong, and c) correct output on the second attempt.
The principles follow the same reward function in section
Inside the <think> tag, where an augmented prompt makes
its first code attempt and a diagnosis if wrong, we assign
a Chain of Thought (CoT) reward. Let A(S,T) denote the
Alive2 judgment of the model’s candidate IR 7' against the
source S, returning either OK (semantically equivalent) or
ERR (not equivalent). The model also produces a self-diagnosis,
including optional feedback text Finoqe1, While Alive2 provides

its diagnostic message Fjive.
The Chain of Thought(CoT) reward is defined as:

1, if both agree on OK,
R =1<0.5+0.5- BLEU(Fodel, Fuiive), if both agree on ERR,
0, otherwise.

@3

Thus, agreement on correctness yields full reward, agreement
on errors yields a partial reward proportional to the similarity
of explanations, and disagreement yields zero reward.

For the <answer> block, the score matches Equation (1)
(section . The final score sums these two componentﬂ

3) Incremental Learning for Latency Optimization (Stage 3):
While MODEL-CORRECTNESS ensures semantic equivalence,
it does not address runtime performance. To push further, we
incrementally fine-tune MODEL-CORRECTNESS with a latency-
oriented reward to generate MODEL-LATENCY. As illustrated
in Figure [4[b), this stage drives the policy toward generating
lower-latency code while maintaining correctness.

At this point, we stop using labeled -instcombine
data in order to allow GRPO to explore policies that are
potentially more optimal than the original —~instcombine.
We still maintain correctness in terms of a reward function that
incentivizes only semantic equivalence to Alive2 rather than
the similarity to —instcombine encoded in section
The scale of reward is based on the relative speedup between
baseline latency ¢(P) (at —00) and candidate latency ¢(P’):

t(P)

=7 ) 3

1P u € (0, 00) 3)
0, if S=0oruc<l,

Tlat = Y “)
(min(l, UZ;1_1>) , ifS=1and u> 1.

Here, u is the speedup ratio, S is the semantic equivalence
check, v > 1 a convex shaping factor, and Uy, the saturation
threshold. For reward normalization, we set v > 1 to
emphasize larger speedups, and set Uy, .« as the 80th percentile
of LLVM -instcombine’s speedups on the training set.

Output of Alive2-error emulation is also dropped as part
of this model (but Alive2 is not dropped from the reward

3A wrong code sequence inside the <think> block followed by the correct
error message, followed by the correct answer (matching the correctness-
augmented samples) in theory gets the same score as getting the answer right
the first time and repeating it in the answer block (matching the first-time
augmented samples). However, since the former involves getting a tricky
sequence of error messages correct, we find that the latter format, where the
<think> code is correct, ends up being incentivized as the model becomes
more able to correct its own errors, so the model becomes better at getting
code right the first time. This allows us to then drop the <think> stage for
the next model, MODEL-LATENCY.

1.0
k)
o
©
2 0.8
[}
o
D 0.6
h=
=
2 0.4+
o
[}
2 0.2 Raw Alive2-Verified Reward
< —— EMA (0.95) Alive2-Verified Reward

0 500 1000 1500 2000
Training Steps
(a) Correctness-oriented stage.

el
—
© 0.6
=
[}
o 0.5
Q.
3 0.4
()
[
9 0.3
n
3 0.2
qc, Raw Latency Speedup Reward
LBJ 0.1+ —— EMA (0.95) Latency Speedup Reward

1000 1500 2000

Training Steps
(b) Latency-oriented stage.

Fig. 4: Training dynamics of GRPO under different reward
settings. The dashed line shows the raw latency speedup reward;
the solid line shows the EMA-smoothed (0.95) curve.

function), since we never directly use the error output and
to avoid wasting generation capacity of the finite-parameter
LLM model on useless output, returning to the original generic
prompt (fig. [I) rather than the augmented error prompt (fig. [2)
as output. However, we can infer from the lack of an accuracy
drop (section [V-D)) that the error emulation that powers the
GRPO of Model-Correctness, and lets it outperform MODEL
ZERO, is preserved internally inside the model’s capabilities.

IV. EXPERIMENTAL SETUP

A. Training and Test Set Generation

We train and evaluate LLM-VeriOpt by constructing a dataset
from the LLVM [22] and GCC [23]] test suites. These suites
have long served as standard validation workloads for compiler
research, as they are explicitly designed to cover a wide range
of optimization patterns and to reveal hidden bugs in corner
cases. We use these benchmarks to enable the model to cover
diverse optimization combinations, including edge cases, and
thereby improve its generalization ability, as well as to evaluate
it over challenging code.

We first compile the source programs into LLVM IR
using the clang/clang++ frontend. The non-optimized IR
is obtained by invoking opt with the —00 flag, while the
optimized IR is generated with opt —instcombine, which
applies a series of peephole optimizations. We then use
llvm-extract to split IR into individual functions, so that
each serves as a self-contained training example.

745



For training, we focus on the subset of functions whose —00
and -instcombine forms are proven semantically equivalent
by Alive2. Pairs that are inequivalenﬂ trigger undefined
behavior, or cause verification timeouts are exclude(ﬂ For
validation, we construct an independent dataset of 4,386 LLVM
IR functions derived from the same GCC and LLVM test suites.
This dataset is strictly isolated from the training set to avoid
any data leakage, and its construction otherwise follows the
methodology above.

B. LLM Inference Strategy

We adopt greedy decoding [[45]] as our sole inference strategy,
to to ensure that repeated inferences on the same input IR
yield identical outputs, eliminating reproducibility issues (in
e.g., stochastic or temperature-controlled strategies [46]). Our
choice follows the setup in LLM-Compiler [4]. We utilize four
common modifications to stabilize/simplify GRPO training:

1) Removal of the KL penalty. Recent studies (e.g., Open-
Reasoner-Zero [47]) suggest that Kullback—Leibler (KL)
divergence [48] penalty is not essential for training with
GRPO. By eliminating the KL term, the policy is allowed
to explore IR transformations more aggressively. Instead
of KL regularization [49]], we rely on gradient clipping
to maintain stability during training.

2) Single-update objective. Since our training data is
abundant and easy to collect, there is no need to perform
multiple gradient updates on the same batch of rollouts.
To avoid amplifying noise, we do not adopt the multi-
update clipped surrogate objective [10]; hence, our
objective reduces to the single-update formulation.

3) Token-Level Loss Normalization. In the original GRPO
paper [[19], the loss is first averaged within each sample
and then averaged across samples, assigning equal weight
to each sample regardless of its length. This introduces a
length bias: long sequences are under-penalized and short
responses under-rewarded, leading the model to prefer
excessively long outputs. DAPO [50] highlights this and
proposes a token-level normalization scheme, in which
the loss is normalized by the total number of tokens
across the global batch rather than by sequence length.
This adjustment ensures that every token contributes
equally, mitigating length bias.

C. Metrics

We characterize IR optimizations along two dimensions:
correctness and efficiency. These metrics serve dual roles: some
are used purely for evaluation, while others also act as reward
signals during training.

4As of writing, due to —instcombine’s complexity it is quite common
for it to produce code that Alive2 can prove is an invalid transformation, with
many open issues [[37]-[40] on GitHub.

3Since prior studies have shown that large language models tend to degrade
in performance when operating over very long context windows [41]], we
restrict the context window in 2048 tokens in our experiments. Specifically,
we tokenize all IR using the Qwen-3b tokenizer and filter out samples with
more than 2048 tokens. Similar practices have also been adopted in prior work
on machine learning-based compiler optimization and neural lifting [3]], [12],
[42]-[44]. Finally, our final training set comprises 34,190 function pairs.

Correctness. Semantic equivalence is the strongest indicator
of correctness in LLVM IR: when two IR programs are
semantically equivalent, compilation is guaranteed to succeed.
We rely on the Alive2 validator to formally check equivalence
between the input and optimized IR. Alive2 outcomes are
categorized into four cases:

1) Syntactic error: invalid IR, non-compilable.

2) Semantic error: compilable but changes behavior.
3) Inconclusive: Alive2 cannot prove equivalence.

4) Semantic equivalence: formally proven equivalent.

Efficiency. Beyond correctness, we report three efficiency
metrics to quantify the effectiveness of IR optimizations:

- Estimated Latency: Execution latency is
estimated for each IR module on an AArch64
target. For each instruction, we query LLVM’s
getInstructionCost (..., TCK_Latency) API
(LLVM 21.0.0git) to obtain estimated latency, and then sum
all instructions to yield module-level latencyf]|

- Instruction Count (ICount): Number of LLVM IR
instructions in a module, reflecting program size at IR level.

- Binary Size: Following Cummins et al.’s LLM-Compiler
methodology [4]], we measure binary size as the on-disk size
(in bytes) of the compiled object file. We sum the . TEXT and
.DATA sections reported by 11vm-size, while excluding
the .bss section since it does not contribute to file size.

V. EVALUATION

We address the following research questions:

RQ1 (Foundation Capability): Can pre-trained foundation
models effectively perform peephole optimization while pre-
serving semantic equivalence, with no further fine-tuning? Al:
While accuracy looks superficially high at 73.2%, we find
that the vast majority of these cases result in the input being
returned as output, producing different correct output from
—-00 in only 16.4% of cases.

RQ2 (Optimization Effectiveness): Do the optimizations
produced by LLM-VERIOPT improve code behavior under
correctness constraints? A2: LLM-VERIOPT produces different
correct output in 90% of cases. It improves performance in
84% of cases, instruction count in 86% of cases, and code size
in 80% of cases, all with verifiably correct output. While the
foundation model produces 16.4% different correct cases, it
only improves performance in 1.2% of cases relative to —00.

RQ3 (Competitiveness): How does LLM-VERIOPT com-
pare with both LLM-based compilers and the traditional
LLVM -instcombine pass? A3: LLM-VERIOPT outper-
forms standard supervised fine-tuned models that are over 10x
larger in parameter size, in both correctness and performance
improvement. Its performance improvement is comparable to

OThis is an approximation of latency, which would fail with more complex
transformations than peephole, such as loop unrolling where static instruction
count would grow, or where different instructions in the real pipeline would
conditionally overlap in ways that would affect the best result (which could be
fixed by switching to pipeline-aware latency measurements such as via LLVM-
mca. Still, since we only try to approximate peephole-style optimizations, the
output produces good results in practice (see section [V-E), and other peephole
techniques e.g. Souper [51] use even simpler latency metrics.

746



TABLE I: Alive2 verification results of baseline Qwen-3B.

Category Count Proportion (%)
Correct (Alive2 verified) 3,210 73.2

— Copy of input (no optimization) (2,490) (56.8)
Semantic Error (Not Equivalent) 185 4.2
Syntax Error (Invalid IR) 927 21.1
Inconclusive 64 1.5

LLVM’s handwritten —instcombine pass (2.30x speedup
vs 2.39x) and produces superior results in 20.1% of cases,
demonstrating LLM-VERIOPT’s ability to produce emergent
optimizations not included in the —instcombine-generated
training set. With a fallback for when the LLM-VERIOPT
output is worse, the net performance improvement is 17%
relative to —~instcombine alone.

RQ4 (Ablation): What is the contribution of design choices
behind the hierarchy of models, including supervised warm-up
and diagnostic-augmented sample-based prompt augmentation
presented in section A4: Each of the four progressive
sub-models gives critical progressive contributions towards all
of latency, instruction count, binary size, and correctness.

A. [RQI] Characterizing the Peephole Optimization Capability
of Foundation Models

We conducted an experiment with baseline Qwen-3B (i.e.,
without our verification-guided GRPO) to evaluate its correct-
ness in generating IR under peephole optimization. Correctness
was assessed using Alive2 to verify semantic equivalence.

In these initial experiments, we directly applied the generic
prompt shown in Figure [T} For a small subset of test cases, we
observed that the model frequently failed to generate outputs
in the required format (with the <answer> tag) and produced
IR that was largely syntactically invalid. To obtain meaningful
statistics, we refined the prompting strategy by introducing
one-shot learning: providing a sample pair of input IR and
its optimized output. This adjustment enabled the model to
consistently follow the required format and slightly improved
correctness. The results are summarized in Table [l

Qwen-3B produced Alive2-verified IR for 73.2% of the
cases. However, a large fraction of these (56.8%) were trivial
copies of the input IR with no optimization applie(ﬂ The actual
rate of semantically correct different (thus potentially useful)
optimizations was therefore much lower at 16.4%. Additionally,
21.1% of the outputs were syntactically invalid and could not
be parsed as legal IR, 4.2% were identified as semantically
incorrect, and 1.5% were inconclusive.

B. [RQ2] Evaluating the Effectiveness of LLM-VERIOPT

Table [ summarizes the Alive2 verification results of
the LLM-VERIOPT models. Excluding trivial copies of the
input, MODEL-CORRECTNESS successfully improves 88.2%

TWhile these answers are correct, they are no more useful than the prompt
“please return the input as the output”, which would have near-100% accuracy
but no optimization capability. Sometimes the output of peephole optimization
should be identical to the input, as no further optimization can occur — but
for —instcombine this was not true for any of the samples in our test set.

TABLE II: Alive2 verification results of Qwen-3B augmented
by LLM-VERIOPT models.

Category Model-Correctness Model-Latency
Count %  Count %

Correct 3,926 89.5 3940 899
— Copy of input (no opt.) (59) (1.4) (67) (1.5)
Semantic Error 227 5.2 237 54
Syntax Error 161 3.7 132 3.0
Inconclusive 72 1.6 66 1.5

TABLE III: Per-sample outcome counts vs. LLVM -O0 (smaller
= better). The last column reports the mean relative change
against -O0 (negative = improvement).

Metric Model Better Worse Tie Total Mean A vs -O0
Latency 3696 0 690 4386 —50.68%
Latency Correctness 3556 1 829 4386 —38.22%
Qwen-3B 53 40 4293 4386 —0.19%
Latency 3528 105 753 4386 -17.37%
Size Correctness 3416 50 920 4386 —14.25%
Qwen-3B 64 31 4291 4386 —0.15%
Latency 3748 0 638 4386 —45.64%
ICount Correctness 3630 0 756 4386 —33.70%
Qwen-3B 62 32 4292 4386 —0.12%

of samples, which is over 5.4 x higher than Qwen-3B (16.4%).
We further evaluate the MODEL-LATENCY to examine whether
incremental learning compromises IR correctness, and find that
its correctness remains stable.

We further evaluate the models in terms of Instruction
Count, Latency, and Binary Size. For outputs that pass Alive2
verification, we directly compute performance metrics; if
verification fails, we fall back to the LLVM -OO0 version.

The results are shown in Table [l MODEL-LATENCY
achieves a substantial reduction in latency: relative to LLVM
-O0, the improvement is also significant. By contrast the
foundation model rarely generates useful code: while the
different accurate (thus potentially useful) rate is 16.4% as
discussed in section is already low, the proportion of
code that is actually improved (rather than different but the
same latency or higher) is just 1.2%, and rarely is any
function improved significantly, resulting in only a 0.19%
mean improvement in latency. Instruction count is also greatly
reduced, with MODEL-LATENCY achieving an average decrease
of 45.6% relative to LLVM -00, and an average reduction of
17.4% in binary size relative to LLVM -OO0.

C. [RQ3] Evaluation against LLM/Compiler Baselines

Versus LLM-based compilers: We compare LLM-
VERIOPT against a range of LLM-based compilers, covering
both supervised fine-tuning (SFT) baselines and state-of-the-art
LLMs. Since small- and medium-scale LLMs exhibit limited
capability in optimizing LLVM IR out-of-the-box, we perform
SFT to ensure a fair comparison. For all SFT baselines, we
adopt the generic prompt template illustrated in Figure [I] and
train on the same dataset as LLM-VERIOPT until convergence,
selecting the best checkpoint for evaluation. We further compare

747



1.95x 2:00x 2.02% 7 9gx

1.93x 1.90x

\-3 \] \| A\l \| \) °
e(\o‘ be) ‘“6553 » \5(‘ » \5? 1 \5(( ® ks?‘ ‘(\Q\\e‘ﬂ
eC Q“e“‘ o Q\New o W(,o 0™
W C ode\« AW A% Q

(a) Latency (geomean improvement over —OO0, higher better).

054X 0.53x  0.52x 0.51x 0.50x 0.51x 0.50x  0.49x%

55_3‘6 o \6((\ " \6(:(\ 1% \6((\ 1$ \‘5(0 \)\\e‘jﬂ o \6\{(\
o @ o Y \ @ e
A e et e W e et

29 o

(c) Instruction count (geomean versus —00, lower better).

89.9% 89.5%

87.2%

86.3%

77.1% 80.3% 82.5% 83.7% 82.6%

Correctness (%)

ot ® ‘“699,36 " & o & © & o \Sm«@\e‘ja " \5(“316 &
2 C 0\ 3 X\ - o~ -
\’\Ode\’\’d WO Qe o™ e ode\)a“‘ \,\S"'C'0 W que®

WO C

(b) Correctness rate.

0.80x 0.82x 0.81x 0.81x 0.80x 0.80x 0.81X 0.79x 0 78x

A A T T
e 20 00 & 0 g o

-3 X\ g O -y 9
N o«ecode»\a‘“ KU N

\6((\ ° \6(:(\
ey

(d) Binary size (geomean versus —0O0, lower better).

Fig. 5: Comparative performance of LLM-VERIOPT and baseline LLM-based compilers, presented in parameter-size order
(in billions). Improvements for latency, binary size, and instruction count are reported as geomean relative to LLVM -00.
Correctness is measured as the percentage of semantically equivalent outputs verified by Alive2.

against a state-of-the-art model without task-specific fine-tuning:
Cummins et al.’s LLM-Compiler-7B [4].

As shown in fig. 5] MODEL-LATENCY achieves the best
results on latency, inst-count, and accuracy, even outperforming
larger models such as Qwen—32Bﬂ Larger models generally
perform better, yet the small-scale MODEL-LATENCY bucks
this trend, surpassing all baselines across most metrics.

Versus LLVM: In Figure [} we compare LLM-VERIOPT’s
MODEL-LATENCY and LLVM’s —instcombine across La-
tency, ICount, and Binary Size. Panels (a) and (b) show that
LLM-VERIOPT achieves improvements over —00 that are
broadly similar to those of —~instcombine, indicating that
the model has successfully learned to match the optimization
capability of a hand-engineered pass. Panel (c) further compares
LLM-VERIOPT directly with —instcombine: for latency -
the primary optimization target - LLM-VERIOPT outperforms
—instcombine in 20.1% of functions, underperforms in
22.6%, and ties in 57.3%, with similar patterns observed
for the other two metrics. Crucially, the cases where LLM-
VERIOPT surpasses —instcombine cannot be attributed to
memorization: the model was trained using labels generated by
—-instcombine, thus these additional gains are likely enabled
by reinforcement learning.

MODEL-LATENCY achieves a geomean 2.30x speedup
versus —00, highly comparable with —~instcombine’s 2.39x
speedup. With a fallback, using model-generated IR only
when it outperforms —instcombine, we achieve significant
geomean improvements: latency 17% gain, instruction count
13.9%, and binary size 2.1%.

8Qwen-32B attains the best improvement in size: unsurprising since LLM-
VERIOPT’s reinforcement learning only implicitly optimizes for it via latency
correlation (section [[TI-C3); other reward functions yield different outcomes.

D. [RQ4] Analyzing the Contribution of Training Strategies
and Prompt Augmentation

We ablate the effect of incorporating Alive2-derived diagnos-
tic information into both training and prompting. Specifically,
we compare the four models presented in section [[II} (i) MODEL
ZERO (GRPO-trained without Alive2 feedback, section [[TI-CT)),
(i) the WARM-UP MODEL, section [[lI-:C2] trained by super-
vised fine-tuning from MODEL ZERO’s diagnostic-augmented
samples, and (iii) MODEL-CORRECTNESS (also section [I1I-C2),
using GRPO to progressively improve Alive2 feedback em-
ulation and code correctness combined, and the final LLM-
VERIOPT mechanism, MODEL-LATENCY, improving MODEL-
CORRECTNESS by incremental learning to induce a latency-
oriented reward without losing correctness (section [[II-C3] As
shown in fig.[7} each stage adds critical improvements. MODEL
ZERO alone is already effective compared with the base Qwen-
3B, which table [[TI] shows gains less than 0.2% on latency,
instruction count and binary sizeﬂ The WARM-UP MODEL
boosts speedup by boosting accuracy, meaning more code gets
successfully modified and improved, by gaining a rudimentary
ability to predict and fix bugs. MODEL-CORRECTNESS takes
this a step further by co-optimizing bug-finding and code-
generating capability via GRPO. Finally, MODEL-LATENCY
builds on this further by retargeting the code to improve
latency rather than just mimic —-instcombine. In fact,
MODEL-LATENCY also gets a better accuracy than MODEL-
CORRECTNESS despite additional latency optimization criteria:

This is despite MODEL-ZERO’s semantic accuracy (50.1%) being lower
than Qwen’s 73.2% meaning it leaves more code at its unprocessed baseline
performance, but as we discuss in section IE this is because the Qwen
baseline makes no meaningful attempt to actually emulate instcombine or
optimize the code, instead just repeating the input in the majority of cases it
returns a valid answer, being vacuously correct.

748



instcombine vs -00

LLM-VeriOpt vs -O0

LLM-VeriOpt vs instcombine

Worse T 0.3% 0.2% 2.1% Worse T 0.0% 0.0% 2.4% Worset 22.6% 26.5% 25.3%
16.00x
()
o
5 4.00%
g 4
—
£
g_) 1.00x — -——— ———* = = —
[
2
® 0.25x
0]
4
0.06x
Better! 92.7% 93.3% 88.7% Better! 84.3% 85.5% 80.4% Better! 20.1% 18.6% 11.6%
Latency ICount Binary Size Latency ICount Binary Size Latency ICount Binary Size
Fig. 6: Pairwise distributions of optimized IR against baselines across Latency, Instruction Count and Binary Size.
2.75 100
89.5% 89.9%
2.50 A
= 80
X —~
3 2.25 4 g
» 2.00 1 60 ﬁ
> c
C -
g 1.75 A - 40 é
o
S 1.50 1 o
© - 20
1.25 1
1.00 - -0

Size

Latency

IEE Model_Zero  mmm Warmup_Model

IE Model_Correctness_3B

ICount Correctness

IEE Model_Latency 3B

Fig. 7: Ablation study: geomean improvements (vs —00, higher is better) for Latency/ICount/Binary Size (left axis) and
Correctness (%) (right axis). We compare four variants: MODEL ZERO, a GRPO-trained 3B model with generic prompts; the
WARM-UP MODEL, supervised fine-tuned on augmented prompts; the MODEL-CORRECTNESS; and the MODEL-LATENCY.

we attribute this to the fact that MODEL-LATENCY does not
have to waste its very finite parameter budget on producing
actual error messages because they are no longer needed once
MODEL-CORRECTNESS has finished using them for its GRPO,
allowing MODEL-LATENCY to retain them only implicitly to
preserve its reasoning capability.

E. Code Examples

LLM-VeriOpt sometimes reduces complex control/data flow
into a single return value where InstCombine does not (fig. [§).
Many emergent optimizations involve complex value propaga-
tion, including fig. [9] Figure [L0] appears to be learning elements
of other LLVM passes (simplifycfg, we also saw mem2reg-
like behavior) from the reward function and Alive-correctness
alone, without explicit finetuning training data and despite base
models failing to do so. VeriOpt does not spot all InstCombine
patterns, perhaps from training-set limitations and from too few
model parameters to fully represent InstCombine: fig. [TT| misses
a truncation, and in fig. [I2] InstCombine fully precalculates
unlike VeriOpt, likely from GRPO discouraging VeriOpt from
attempting arithmetic LLMs are poor at.

VI. DISCUSSION

On the role of GRPO without explicit reasoning. Al-
though GRPO is often intended to encourage models to
autonomously generate an explicit chain of thought, in our

InstCombine: LLM-VeriOpt:
define dso_local i64
@get_d() #0 {
ret i64 0

%struct.S = type { i32, i32 }
define dso_local i64 @get_d() #0 {
%1 = alloca i64, align 8
%tmpcast = bitcast i64x %1 to }
Jostruct . S
%2 = bitcast i64x %1 to i32x
store i32 0, i32x %2, align 8
%3 = getelementptr inbounds
%struct .S, %struct.Sx
Yotmpcast, i64 0, i32 1
store i32 0, i32+ %3, align 4
%4 = load 164, i64x %1, align 8
ret i64 %4

Fig. 8: Simplification to 0.

experimental setting, this mechanism did not function as
expected. Instead, we primarily relied on manually constructed
reasoning chains—namely, augmented prompts that embed
Alive2 diagnostic information—serving as “externally provided
chains of thought” rather than model-generated ones. The
underlying cause lies in model scale: our 3B-parameter model
lacks sufficient prior knowledge of LLVM IR to produce
coherent and meaningful reasoning steps. During training, the
chain of thought generated autonomously by the model is
typically noisy and uninformative, and thus contributed little to
improving optimization capability. We hypothesize, however,
that when applied to larger foundation models with richer IR

749



InstCombine: LLM-VeriOpt:
define dso_local i64 @f28(i64 define dso_local 164 @f28(i64
noundef %0, 164 noundef noundef %0, i64 noundef
%) #1 { %) #1 {
%3 = alloca i64, align 8 %3 = add 164 %0, %l
%4 = add 164 %0, %l %4 = icmp uge i64 %0, %3
164 %3, br il %4, label %12, label
%13
call void @foo(i32 0)

store 64 %4,
align 8
%.not = icmp ugt 164 %4, %0 12:

br il %.not, label %6, br label %13
label %5 13: ret i64 %3
5: call void @foo(i32 noundef }

0) #2
br label %6
6: %7 = load i64 ,
align 8
ret i64 %7

164 %3,

}
Fig. 9: VeriOpt removes redundant allocas, stores and loads.

LLM-VeriOpt:

define dso_local i32 @opt_ul( define dso_local i32 @opt_ul(
i32 noundef %0) #0 { i32 noundef %0) #0 {

InstCombine:

%2 = alloca i32, align 4 %2 = icmp ult i32 %0, 10
store i32 %0, i32x %2, br il %2, label %8, label
align 4 99
%3 = icmp ult i32 %0, 10 8: ret i32 0
br il %3, label %4, label 9: %10 = sub i32 %0, 12
%5 %11 = udiv i32 %10, 4
4: br label %10 %12 = add i32 %11, 3
5: %6 = load i32, i32x %2, ret i32 %12
align 4 }
%7 = add i32 %6, -12
%8 = lIshr i32 %7, 2
%9 = add nuw nsw i32 %8, 3

br label %10
10: %storemerge = phi i32 [
%9, %5 1, [ 0, %4 1
ret i32 %storemerge

}
Fig. 10: Emergent learning of simplifycfg-style behavior.

semantic knowledge (e.g., a 32B-parameter model), GRPO
could potentially elicit more coherent self-generated reasoning

chains, which may lead to stronger optimization performance.

Limitations of Alive2. We found a couple examples in the
test-set where Alive2 gets the answer wrong, likely because of

Alive2’s well-documented limitations around loop analysis [[15].

This was very rare seemingly because InstCombine does not
do complex loop transformation, nor does our reward function
incentivize it appearing emergently, meaning changes appear
within a few bounded unrolls — but Alive2 currently cannot
guarantee correctness even then, and this is likely to cause
practical impediments with loop-level analyses. This is not
a theoretical impediment — with support for loop induction,
or constraints over loop-format changes to make the problem
tractable, we expect soundness would improve.

VII. RELATED WORK

In recent years, there has been a growing interest in
leveraging Large Language Models (LLMs) for tasks involving
source code generation. Models such as Copilot [52], Codex
[53]], TransCoder [54], CodeBERT [55], Code Llama [56],
StarCoder [57], [58]], Magicoder [59] and DeepSeek-Coder [60]
have significantly advanced this field. These models support
developers with tasks like code completion, generation, and
translation across multiple programming languages.

InstCombine: LLM-VeriOpt:

define dso_local i32 @f8(i64
noundef %0) #0 {

define dso_local i32
noundef %0) #0 {

@f8(i64

%2 = 1shr i64 %0, 61 %2 = 1shr 164 %0, 61
%3 = trunc i64 %2 to i32 %3 = trunc 164 %2 to il6
%4 = add nuw nsw i32 %3, 1 %4 = sext i16 %3 to i32
ret i32 %4 %5 = add nsw 132 %4, 1
} %6 = trunc i32 %5 to il6
%1 = sext il16 %6 to i32
ret i32 %7
}

Fig. 11: InstCombine spots a superior simplification.

InstCombine: LLM-VeriOpt:
define dso_local i32 define dso_local i32
@aqua_baldo () #0 { @aqua_baldo () #0 {
ret i32 -159 %1 = srem i32 160, 11
} %2 = sub nsw i32 %1, 2
%3 = add nsw i32 6, %2
%4 = srem i32 11, %3
%5 = sub nsw i32 1, 160
%6 = srem i32 %2, %4
%7 = add nsw i32 %5, %6

ret i32 %7
}

Fig. 12: InstCombine fully precalculates.

Fewer models operate at the compiler level, particularly
with code generation and compiler optimization. Recent
studies have focused on traditional machine-learning methods
for compiler optimization [44]], [61]-[67]. Neural machine
translation techiques have been employed to transform code
between different representations, previous examples include
compiling C to X86 assembly [8] and decompiling assembly
language to C [68]], [69]. These works utilized smaller models
or other deep learning methods. There are a few works related to
using LLM at the compiler level. Examples include using large
models for decompilers [70]-[72]], LLVM-IR passes prediction
with IR optimization [3]], and fuzzing tests [[73]], [74].

VIII. CONCLUSION

In this paper, we present LLM-VERIOPT, a framework for
producing high-quality, accurate, and performant optimization
passes via LLMs. LLM-VERIOPT takes classification data
from a compiler pass it is trying to emulate, observes the
mistakes it makes in doing so, learns to diagnose these mistakes,
and ultimately corrects them. Through a hierarchy of models,
LLM-VERIOPT is able to transform the Qwen-3B LLM from
an 0.2% speedup to over 2.3, by both vastly improving the
coverage of code by generating verifiably correct optimizations,
and also by improving the optimization of the code it covers by
generating high-quality transformations. We believe the three-
stage framework we provide here has significant potential in
facilitating the development of ever more ambitious LLM
compiler passes, which, when scaled up to larger models
and more ambitious training sets will allow consistent and
large improvements over handwritten compiler passes, as well
as generating code that is easy to verify with models such
as Alive2, sidestepping traditional LLM correctness barriers
completely.

750



ARTIFACT APPENDIX
Artifact Abstract

This artifact is designed to run on a modern Linux envi-
ronment. It provides all trained models, datasets, inference
scripts, configuration files, and reproduction materials required
to replicate the results presented in the paper. It includes: (1)
all trained SFT, GRPO LoRA models; (2) all test datasets; (3) a
unified inference pipeline; (4) configuration files covering every
model variant; (5) scripts to reproduce the figures used in the
paper; (6) author-provided reference outputs for verification;
and (7) a complete summary table that aggregates each model’s
outputs across the full test set, including IR size, latency,
instruction count, and correctness metrics. reported in the paper
are generated directly from this summary table.

The artifact supports both full test-set evaluation
and  lightweight  sampling-based  evaluation. @ We
strongly recommend wusing the sampling script
(run_inference_demo.sh) for practical evaluation
on commodity hardware. The full artifact, including

models, scripts, datasets, and reproducibility materials,
is publicly available on GitHub and Zenodo at
https://github.com/carrotProgrammer/llmveriopt-AE and
https://doi.org/10.528 1/zenodo.17625555

1. Artifact Check List

o Models: All LoRA adapters included.

o Datasets: All test datasets included.

e Output data: Author-produced reference results in
reference_results/.

o Scripts: Sampling evaluation, full evaluation, and figure-
generation scripts provided.

« Hardware Requirements:

— Recommended: Nvidia GPU > 32 GB for 7B/8B/32B
models.

— Minimum: Nvidia GPU > 16 GB for 3B models.

— CPU execution is supported (with fallback if no
Nvidia GPU is detected), but extremely slow (may
take days).

o Software Requirements: Linux, Python 3.10, PyTorch,
Transformers, PEFT, datasets, YAML.

o Estimated Runtime: (The following runtime estimates
are based on measurements using an NVIDIA RTX 3090ti
GPU.)

— Sampling evaluation: lhr. (10-16hr on CPU with
default LIMIT=32)

— Full evaluation for model_latency_3b: 9-12h.

— Full 3B/7B/8B/32B evaluation with large-GPU sup-
port: multiple days.

o Archived: https://doi.org/10.5281/zenodo.17625555

2. Dependencies
All dependencies can be installed using:
pip install —-r requirements.txt
Key packages include: torch, transformers, peft,

datasets, pyyaml. All experiments were tested using the
package versions listed in requirements.txt, running on

Ubuntu 24.04. Other compatible versions may work but have
not been systematically evaluated.

Gated models provided by Meta (e.g., the Llama model
family) require HuggingFace authentication Evaluators must
first request access on the corresponding model card page, then
generate a personal access token on HuggingFace, and finally
authenticate locally using:
huggingface—-cli login
By default, base models are accessed directly from Hugging-
Face. If network access to HuggingFace is unavailable, evalua-
tors may manually download the required models in advance
and update the base_model fields in all configuration files
to point to the corresponding local paths.

3. Installation and Directory Structure

The artifact consists of two components: (1) the main
repository hosted on GitHub, and (2) the evaluation dataset
hosted on Zenodo. Users must obtain both before running.

3.1 Obtaining the Artifact:

a) Main repository: The primary artifact repository,
including trained models, inference scripts, configuration files,
and figure-reproduction scripts, is available at:

https://github.com/carrotProgrammer/limveriopt- AE

Users may clone it with:
git clone https :// github.com/carrotProgrammer/
Ilmveriopt —AE
cd llmveriopt —AE

b) Evaluation dataset (Zenodo).: The evaluation dataset
required by the artifact is provided via Zenodo:

https://doi.org/10.5281/zenodo.17625556

After downloading llmveriopt-datasets.zip, ex-
tract it and place the resulting dataset/ directory directly

under the artifact root:
unzip llmveriopt—datasets.zip

Ilmveriopt —AE/
‘—— dataset/
‘—— <dataset files>

This directory contains all test IR programs, latency bench-
marks, and reference outputs used by the evaluation pipeline.
3.2 Directory Structure: After cloning the repository and

placing the dataset, the directory layout should be:
Ilmveriopt —AE/

|-— models/ # LoRA adapters and baseline model
references
|-— dataset/ # Evaluation datasets (from Zenodo)

|-— inference/
run_inference_demo . sh
run_inference_all.sh
run_model_latency .sh

|-— output/ # Evaluation logs and generated
results
|-— tools/ # Alive2 bindings and prebuilt

LLVM shared libraries
| ‘—— configs /*.yaml
|-— reproduce_figures/
|-— summary_table/
| ‘—— reproduce_figures.sh
|-— requirements. txt
‘—— README.md

751


https://github.com/carrotProgrammer/llmveriopt-AE
https://doi.org/10.5281/zenodo.17625555
https://doi.org/10.5281/zenodo.17625555
https://github.com/carrotProgrammer/llmveriopt-AE
https://doi.org/10.5281/zenodo.17625556

All LLVM shared libraries needed for Alive2 (e.g.,
1ibLLVM. so) are included in:

inference/tools/llvm-project/build/lib/

No additional compilation steps are required.

3.3 Dependencies: The artifact requires Python 3.10 or

newer. Install all Python dependencies via:
pip install —-r requirements.txt

Alive2 further requires the Z3 SMT solver. On De-
bian/Ubuntu:

sudo apt update
sudo apt install z3 libz3 —dev

If users wish to evaluate gated models (e.g., Llama-family
checkpoints), HuggingFace authentication is required:
huggingface—-cli login

Hardware Notes: While CPU execution is supported, we
strongly recommend running on an NVIDIA GPU with at
least 16 GB of memory. If no GPU is detected, the scripts
automatically fall back to CPU mode.

Users may explicitly force CPU execution by clearing the

CUDA device list:
export CUDA_VISIBLE_DEVICES=""

or specify a particular GPU index if multiple devices exist.

4. Evaluation

4.1 Quick Functional Test (Recommended): A lightweight
sampling-based evaluation is provided to verify that model
inference, IR generation, and Alive2 verification all function
correctly. This mode uses a small subset of the dataset and
typically completes within minutes on commodity hardware.

To run the quick evaluation:
cd inference
chmod +x run_inference_demo . sh
./run_inference_demo . sh

Results are written to:
inference/output/new_result/

Each evaluated model generates:
<model_name >/
|-— results.csv

records

—— metrics.json
metrics

# Per—function evaluation

¢ # Summary and correctness
A summary figure (summary .png) is produced and may

be compared against the reference file:
inference/output/reference_results/summary.png

This procedure validates that the full evaluation pipeline is
functioning correctly. We strongly encourage reviewers to
begin with this mode prior to running the full suite.

4.2 Full Reproduction (Not Recommended on Small GPUs):

To reproduce all results:

cd inference

chmod +x run_inference_all.sh
./run_inference_all.sh

This evaluates all models (3B/7B/8B/32B) on the full test sets
(up to 4386 samples). Warning: This requires an Nvidia GPU
with >32 GB memory. On smaller devices, inference fail due
to out of VRAM.

Note: this script performs inference only. It does not generate

metrics or summary figures.
4.3 Final Model Evaluation (model_latency) - only: The

script run_model_latency.sh runs the full evaluation
for our final model, model_latency, which is the primary
model used to produce the main results reported in the paper.
This model achieves the best overall performance among
all evaluated variants, and is a subset of the experiments
implemented for the full reproduction. Since it only evaluates a

3B model, memory requirements are 16 GB instead of 32 GB.
cd inference

chmod +x run_model_latency.sh

./run_model_latency .sh

This script runs the full latency evaluation over the entire test
set and is computationally expensive. On an Nvidia RTX 3090
GPU, the expected runtime is approximately 9—12 hours.
Running the script on smaller GPUs may lead to out-of-memory
failures.

Note: This script reproduces the inference output for the
primary model (Model_Latency) used in the paper. It does not
compute metrics/generate plots.

4.4  Experiment Modification: All three scripts above share
the same logic; they differ only in the model list and the LIMIT
settings. run_inference_all. sh runs all models (Meta +
Qwen) on the full test set, run_model_latency.sh runs
only the model_latency_3b configuration on the full test
set, and run_inference_demo.sh runs the 3B models
with a smaller, user-configurable sample limit. Reviewers may
adjust both the model list and the LIMIT directly in the relevant
. sh files.

5. Expected Results
Running the sampling script produces:
e CSV outputs under inference/output/new_

result/<model>/results.csv.
o Deterministic IR generation patterns for sampled tests.

Reviewers should compare:

inference/output/new_result/summary.png

against the reference version:

inference/output/reference_results/
summary .png

to confirm reproducibility of the evaluation pipeline.

All IR outputs, Alive2 verification logs, and detailed metrics
are stored under each <model_name> directory.

6. Notes for Evaluators

The artifact is compatible with any modern Linux system.
However, hardware with insufficient GPU memory will en-
counter out-of-memory errors when running larger models. We
recommend only running on CPUs (as described above) and
only running the functional tests if so, to limit compute time.

All scripts are deterministic because model generation uses
greedy decoding.

752



[1]

[2]

[3]

[4]

[5]

[6]

[7

—

[8

=

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

REFERENCES

T. Theodoridis, M. Rigger, and Z. Su, “Finding missed optimizations
through the lens of dead code elimination,” in Proceedings of the
27th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS ’22.
New York, NY, USA: Association for Computing Machinery, 2022, p.
697-709. [Online]. Available: https://doi.org/10.1145/3503222.3507764
C. Cummins, B. Wasti, J. Guo, B. Cui, J. Ansel, S. Gomez,
S. Jain, J. Liu, O. Teytaud, B. Steiner, Y. Tian, and H. Leather,
“Compilergym: robust, performant compiler optimization environments
for ai research,” in Proceedings of the 20th IEEE/ACM International
Symposium on Code Generation and Optimization, ser. CGO
’22.  IEEE Press, 2022, p. 92-105. [Online]. Available: https]
/ldoi.org/10.1109/CG053902.2022.9741258

C. Cummins, V. Seeker, D. Grubisic, M. Elhoushi, Y. Liang, B. Roziere,
J. Gehring, F. Gloeckle, K. Hazelwood, G. Synnaeve, and H. Leather,
“Large language models for compiler optimization,” 2023. [Online].
Available: https://arxiv.org/abs/2309.07062

C. Cummins, V. Seeker, D. Grubisic, B. Roziere, J. Gehring, G. Synnaeve,
and H. Leather, “Llm compiler: Foundation language models for
compiler optimization,” in Proceedings of the 34th ACM SIGPLAN
International Conference on Compiler Construction, ser. CC ’25. New
York, NY, USA: Association for Computing Machinery, 2025, p.
141-153. [Online]. Available: https://doi.org/10.1145/3708493.3712691
S. Tang, C. Priebe, R. Mahapatra, L. Qin, and H. Esmaeilzadeh,
“Compiler optimization via llm reasoning for efficient model serving,”
2025. [Online]. Available: https://arxiv.org/abs/2506.01374

X. Fang and L. Mukhanov, “Towards 1lm-based optimization compilers.
can llms learn how to apply a single peephole optimization? reasoning is
all llms need!” 2024. [Online]. Available: https://arxiv.org/abs/2412.12163
A. Wei, T. Suresh, H. Tan, Y. Xu, G. Singh, K. Wang, and A. Aiken,
“Supercoder: Assembly program superoptimization with large language
models,” 2025. [Online]. Available: https://arxiv.org/abs/2505.11480

J. Armengol-Estapé and M. F. P. O’Boyle, “Learning c to x86 translation:
An experiment in neural compilation,” NeurIPS 2021 AIPLANS
Workshop, 2021. [Online]. Available: https://arxiv.org/abs/2108.07639
Z. Gao, H. Wang, Y. Wang, and C. Zhang, “Vic: Virtual compiler
is all you need for assembly code search,” 2024. [Online]. Available:
https://arxiv.org/abs/2408.06385

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” 2017. [Online]. Available:
https://arxiv.org/abs/1707.06347

H. Face, “Qwen2.5-coder-7b: Code-specific qwen large language models,”
https://huggingface.co/Qwen/Qwen2.5-Coder-7B, 2024, accessed: 2025-
09-10.

C. Cummins, V. Seeker, D. Grubisic, B. Roziere, J. Gehring,
G. Synnaeve, and H. Leather, “Meta large language model compiler:
Foundation models of compiler optimization,” 2024. [Online]. Available:
https://arxiv.org/abs/2407.02524

J. Taneja, A. Laird, C. Yan, M. Musuvathi, and S. K. Labhiri,
“Llm-vectorizer: Llm-based verified loop vectorizer,” in Proceedings
of the 23rd ACM/IEEE International Symposium on Code Generation
and Optimization, ser. CGO ’25. New York, NY, USA: Association
for Computing Machinery, 2025, p. 137-149. [Online]. Available:
https://doi.org/10.1145/3696443.3708929

L. Huang, W. Yu, W. Ma, W. Zhong, Z. Feng, H. Wang, Q. Chen,
W. Peng, X. Feng, B. Qin, and T. Liu, “A survey on hallucination
in large language models: Principles, taxonomy, challenges, and open
questions,” ACM Trans. Inf. Syst., vol. 43, no. 2, Jan. 2025. [Online].
Available: https://doi.org/10.1145/3703155

N. P. Lopes, J. Lee, C.-K. Hur, Z. Liu, and J. Regehr, “Alive2:
bounded translation validation for llvm,” in Proceedings of the 42nd
ACM SIGPLAN International Conference on Programming Language
Design and Implementation, ser. PLDI 2021. New York, NY, USA:
Association for Computing Machinery, 2021, p. 65-79. [Online].
Available: https://doi.org/10.1145/3453483.3454030

N. Lambert, J. Morrison, V. Pyatkin, S. Huang, H. Ivison, F. Brahman,
L. J. V. Miranda, A. Liu, N. Dziri, S. Lyu, Y. Gu, S. Malik, V. Graf, J. D.
Hwang, J. Yang, R. L. Bras, O. Tafjord, C. Wilhelm, L. Soldaini, N. A.
Smith, Y. Wang, P. Dasigi, and H. Hajishirzi, “Tulu 3: Pushing frontiers
in open language model post-training,” 2025. [Online]. Available:
https://arxiv.org/abs/2411.15124

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]
[26]

[27]

(28]

[29]

[30]

(31]

(32]

(33]

[34]

753

X. Wen, Z. Liu, S. Zheng, Z. Xu, S. Ye, Z. Wu, X. Liang, Y. Wang,
J. Li, Z. Miao, J. Bian, and M. Yang, “Reinforcement learning with
verifiable rewards implicitly incentivizes correct reasoning in base llms,”
2025. [Online]. Available: https://arxiv.org/abs/2506.14245

Y. Mroueh, “Reinforcement learning with verifiable rewards: Grpo’s
effective loss, dynamics, and success amplification,” 2025. [Online].
Available: https://arxiv.org/abs/2503.06639

Z. Shao, P. Wang, Q. Zhu, R. Xu, J. Song, X. Bi, H. Zhang, M. Zhang,
Y. K. Li, Y. Wu, and D. Guo, “Deepseekmath: Pushing the limits
of mathematical reasoning in open language models,” 2024. [Online].
Available: https://arxiv.org/abs/2402.03300

H. Face, “Qwen2.5-3b-instruct:an instruction-tuned language model,”
https://huggingface.co/Qwen/Qwen?2.5-3B-Instruct, 2023, accessed: 2025-
09-10.

LLVM, “Instructioncombining.cpp source file,” Accessed: Jul.
7, 2024, Jul 2024, [Online]. Available: https://llvm.org/doxygen/
InstructionCombining_8cpp_source.html.

LLVM Project, “Llvm test suite,” https://github.com/llvm/llvm- test-suite,
2025, accessed: 2025-09-03.

Free Software Foundation, Installing GCC: Testing, 2025, Note: GCC
Testsuite is distributed as part of the GCC source tree. Accessed:
2025-09-03. [Online]. Available: https://gcc.gnu.org/install/test.html

C. Lattner and V. Adve, “LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation,” in Proceedings of the
2004 International Symposium on Code Generation and Optimization
(CGO’04), Palo Alto, California, Mar 2004. [Online]. Available:
https://dl.acm.org/doi/10.5555/977395.977673

S. S. Muchnick, Advanced Compiler Design and Implementation.
Francisco, CA, USA: Academic Press/Morgan Kaufmann, 1997.
C. N. Fischer, R. K. Cytron, and R. J. L. Jr., Crafting a Compiler.
Boston, MA, USA: Addison-Wesley, 2010.

N. Popov, “How single-iteration instcombine improves llvm compile
time,” Red Hat Developer, Dec. 2023, accessed: 2025-09-09.
[Online]. Available: https://developers.redhat.com/articles/2023/12/07/
how-single-iteration-instcombine-improves-llvm-compile-time

T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal,
A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M.
Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin,
S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford,
I. Sutskever, and D. Amodei, “Language models are few-shot learners,”
2020. [Online]. Available: https://arxiv.org/abs/2005.14165

S. Xu, W. Fu, J. Gao, W. Ye, W. Liu, Z. Mei, G. Wang, C. Yu, and Y. Wu,
“Is DPO superior to PPO for LLM alignment? A comprehensive study,” in
Proceedings of the 41st International Conference on Machine Learning,
ser. Proceedings of Machine Learning Research, R. Salakhutdinov,
Z. Kolter, K. Heller, A. Weller, N. Oliver, J. Scarlett, and F. Berkenkamp,
Eds., vol. 235. PMLR, 21-27 Jul 2024, pp. 54 983-54 998. [Online].
Available: https://proceedings.mlr.press/v235/xu24h.html!

Y. Wang and F. Xie, “Enhancing translation validation of compiler
transformations with large language models,” 2024. [Online]. Available:
https://arxiv.org/abs/2401.16797

J. Lee, D. Kim, C.-K. Hur, and N. P. Lopes, “An smt encoding
of llvm’s memory model for bounded translation validation,” in
Computer Aided Verification: 33rd International Conference, CAV
2021, Virtual Event, July 20-23, 2021, Proceedings, Part Il. Berlin,
Heidelberg: Springer-Verlag, 2021, p. 752-776. [Online]. Available:
https://doi.org/10.1007/978-3-030-81688-9_35

“Llvm qualification wg sync-ups meeting min-
utes,” 2025. [Online]. Available: |https://discourse.llvm.org/t/
Ilvm-qualification- wg-sync-ups- meeting- minutes/87148

K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: a method for
automatic evaluation of machine translation,” in Proceedings of the
40th Annual Meeting on Association for Computational Linguistics, ser.
ACL ’02. USA: Association for Computational Linguistics, 2002, p.
311-318. [Online]. Available: https://doi.org/10.3115/1073083.1073135
M. Pezeshki, O. Kaba, Y. Bengio, A. C. Courville, D. Precup,
and G. Lajoie, “Gradient starvation: A learning proclivity in neural
networks,” in Advances in Neural Information Processing Systems,
M. Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang, and J. W.
Vaughan, Eds., vol. 34. Curran Associates, Inc., 2021, pp. 1256—
1272. [Online]. Available: https://proceedings.neurips.cc/paper_files/
paper/2021/file/0987b8b338d6c90bbedd863 1bc499221-Paper.pdf

San


https://doi.org/10.1145/3503222.3507764
https://doi.org/10.1109/CGO53902.2022.9741258
https://doi.org/10.1109/CGO53902.2022.9741258
https://arxiv.org/abs/2309.07062
https://doi.org/10.1145/3708493.3712691
https://arxiv.org/abs/2506.01374
https://arxiv.org/abs/2412.12163
https://arxiv.org/abs/2505.11480
https://arxiv.org/abs/2108.07639
https://arxiv.org/abs/2408.06385
https://arxiv.org/abs/1707.06347
https://huggingface.co/Qwen/Qwen2.5-Coder-7B
https://arxiv.org/abs/2407.02524
https://doi.org/10.1145/3696443.3708929
https://doi.org/10.1145/3703155
https://doi.org/10.1145/3453483.3454030
https://arxiv.org/abs/2411.15124
https://arxiv.org/abs/2506.14245
https://arxiv.org/abs/2503.06639
https://arxiv.org/abs/2402.03300
https://huggingface.co/Qwen/Qwen2.5-3B-Instruct
https://llvm.org/doxygen/InstructionCombining_8cpp_source.html
https://llvm.org/doxygen/InstructionCombining_8cpp_source.html
https://github.com/llvm/llvm-test-suite
https://gcc.gnu.org/install/test.html
https://dl.acm.org/doi/10.5555/977395.977673
https://developers.redhat.com/articles/2023/12/07/how-single-iteration-instcombine-improves-llvm-compile-time
https://developers.redhat.com/articles/2023/12/07/how-single-iteration-instcombine-improves-llvm-compile-time
https://arxiv.org/abs/2005.14165
https://proceedings.mlr.press/v235/xu24h.html
https://arxiv.org/abs/2401.16797
https://doi.org/10.1007/978-3-030-81688-9_35
https://discourse.llvm.org/t/llvm-qualification-wg-sync-ups-meeting-minutes/87148
https://discourse.llvm.org/t/llvm-qualification-wg-sync-ups-meeting-minutes/87148
https://doi.org/10.3115/1073083.1073135
https://proceedings.neurips.cc/paper_files/paper/2021/file/0987b8b338d6c90bbedd8631bc499221-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/0987b8b338d6c90bbedd8631bc499221-Paper.pdf

[35]

[36]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

DeepSeek-Al, D. Guo, D. Yang, H. Zhang, J. Song, R. Zhang, R. Xu,
Q. Zhu, S. Ma, P. Wang, X. Bi, X. Zhang, X. Yu, Y. Wu, Z. E. Wu,
Z. Gou, Z. Shao, Z. Li, Z. Gao, A. Liu, B. Xue, B. Wang, B. Wu,
B. Feng, C. Lu, C. Zhao, C. Deng, C. Zhang, C. Ruan, D. Dai, D. Chen,
D. Ji, E. Li, F. Lin, F. Dai, F. Luo, G. Hao, G. Chen, G. Li, H. Zhang,
H. Bao, H. Xu, H. Wang, H. Ding, H. Xin, H. Gao, H. Qu, H. Li,
J. Guo, J. Li, J. Wang, J. Chen, J. Yuan, J. Qiu, J. Li, J. L. Cai, J. Ni,
J. Liang, J. Chen, K. Dong, K. Hu, K. Gao, K. Guan, K. Huang, K. Yu,
L. Wang, L. Zhang, L. Zhao, L. Wang, L. Zhang, L. Xu, L. Xia,
M. Zhang, M. Zhang, M. Tang, M. Li, M. Wang, M. Li, N. Tian,
P. Huang, P. Zhang, Q. Wang, Q. Chen, Q. Du, R. Ge, R. Zhang,
R. Pan, R. Wang, R. J. Chen, R. L. Jin, R. Chen, S. Lu, S. Zhou,
S. Chen, S. Ye, S. Wang, S. Yu, S. Zhou, S. Pan, S. S. Li, S. Zhou,
S. Wu, S. Ye, T. Yun, T. Pei, T. Sun, T. Wang, W. Zeng, W. Zhao,
W. Liu, W. Liang, W. Gao, W. Yu, W. Zhang, W. L. Xiao, W. An,
X. Liu, X. Wang, X. Chen, X. Nie, X. Cheng, X. Liu, X. Xie, X. Liu,
X. Yang, X. Li, X. Su, X. Lin, X. Q. Li, X. Jin, X. Shen, X. Chen,
X. Sun, X. Wang, X. Song, X. Zhou, X. Wang, X. Shan, Y. K. Li, Y. Q.
Wang, Y. X. Wei, Y. Zhang, Y. Xu, Y. Li, Y. Zhao, Y. Sun, Y. Wang,
Y. Yu, Y. Zhang, Y. Shi, Y. Xiong, Y. He, Y. Piao, Y. Wang, Y. Tan,
Y. Ma, Y. Liu, Y. Guo, Y. Ou, Y. Wang, Y. Gong, Y. Zou, Y. He,
Y. Xiong, Y. Luo, Y. You, Y. Liu, Y. Zhou, Y. X. Zhu, Y. Xu, Y. Huang,
Y. Li, Y. Zheng, Y. Zhu, Y. Ma, Y. Tang, Y. Zha, Y. Yan, Z. Z. Ren,
Z. Ren, Z. Sha, Z. Fu, Z. Xu, Z. Xie, Z. Zhang, Z. Hao, Z. Ma, Z. Yan,
Z. Wu, Z. Gu, Z. Zhu, Z. Liu, Z. Li, Z. Xie, Z. Song, Z. Pan, Z. Huang,
Z. Xu, Z. Zhang, and Z. Zhang, “Deepseek-rl: Incentivizing reasoning
capability in llms via reinforcement learning,” 2025. [Online]. Available:
https://arxiv.org/abs/2501.12948

D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen,
T. Lillicrap, F. Hui, L. Sifre, G. van den Driessche, T. Graepel,
and D. Hassabis, “Mastering the game of go without human
knowledge,” Nature, vol. 550, pp. 354—, Oct. 2017. [Online]. Available:
http://dx.doi.org/10.1038/nature24270

Nikita Popov, “Issue #151303 on llvm/llvm-project: [instcombine]
incorrect fabs + nsz fold,” GitHub issues, Jul. 2025, https://github.com/
Ilvm/llvm-project/issues/151303.

Nuno Lopes, “Issue #156435 on llvm/llvm-project: Instcombine/lowerob-
jectsizecall introducing an assume about allocation sizes,” GitHub issues,
2025, https://github.com/llvm/llvm-project/issues/156435.

Yingwei Zheng, “Issue #157238 on llvm/llvm-project: [instcombine]
wrong folding of is.fpclass + minnum,” GitHub issues, 2025, https:
//github.com/llvim/llvm-project/issues/157238.

——, “Issue #157254 on llvm/llvm-project: [instcombine] wrong fold-
ing of select + fpext,” GitHub issues, 2025, https://github.com/llvm/
Ilvm-project/issues/157254.

N. F. Liu, K. Lin, J. Hewitt, A. Paranjape, M. Bevilacqua,
F. Petroni, and P. Liang, “Lost in the middle: How language
models use long contexts,” Transactions of the Association for
Computational Linguistics, vol. 12, pp. 157-173, 2024. [Online].
Auvailable: https://aclanthology.org/2024.tacl-1.9/

J. Armengol-Estapé, J. Woodruff, C. Cummins, and M. F. O’Boyle,
“Slade: A portable small language model decompiler for optimized
assembly,” in 2024 IEEE/ACM International Symposium on Code
Generation and Optimization (CGO), 2024, pp. 67-80. [Online].
Available: https://doi.org/10.1109/CG0O57630.2024.10444788

J. Armengol-Estapé, R. C. O. Rocha, J. Woodruff, P. Minervini,
and M. O’Boyle, “Forklift: An extensible neural lifter,” in First
Conference on Language Modeling, 2024. [Online]. Available:
https://openreview.net/forum?id=LWfDcl6txJ

Z. Zheng, K. Wu, L. Cheng, L. Li, R. C. O. Rocha, T. Liu, W. Wei,
J. Zeng, X. Zhang, and Y. Gao, “Vectrans: Enhancing compiler
auto-vectorization through llm-assisted code transformations,” 2025.
[Online]. Available: https://arxiv.org/abs/2503.19449

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,” 2023.
[Online]. Available: https://arxiv.org/abs/1706.03762

A. Holtzman, J. Buys, L. Du, M. Forbes, and Y. Choi, “The
curious case of neural text degeneration,” 2020. [Online]. Available:
https://arxiv.org/abs/1904.09751

J. Hu, Y. Zhang, Q. Han, D. Jiang, X. Zhang, and H.-Y.
Shum, “Open-reasoner-zero: An open source approach to scaling up
reinforcement learning on the base model,” 2025. [Online]. Available:
https://arxiv.org/abs/2503.24290

(48]
[49]

[50]

(51]

[52]

[53

[t

[54]

[55]

[56]

(571

(58]

[59]

[60]

754

S. Kullback and R. A. Leibler, “On information and sufficiency,” Ann.
Math. Statist., vol. 22, no. 1, pp. 79-86, 1951.

D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” 2022.
[Online]. Available: https://arxiv.org/abs/1312.6114,

Q. Yu, Z. Zhang, R. Zhu, Y. Yuan, X. Zuo, Y. Yue, W. Dai, T. Fan,
G. Liu, L. Liu, X. Liu, H. Lin, Z. Lin, B. Ma, G. Sheng, Y. Tong,
C. Zhang, M. Zhang, W. Zhang, H. Zhu, J. Zhu, J. Chen, J. Chen,
C. Wang, H. Yu, Y. Song, X. Wei, H. Zhou, J. Liu, W.-Y. Ma, Y.-Q.
Zhang, L. Yan, M. Qiao, Y. Wu, and M. Wang, “Dapo: An open-source
IIm reinforcement learning system at scale,” 2025. [Online]. Available:
https://arxiv.org/abs/2503.14476

R. Sasnauskas, Y. Chen, P. Collingbourne, J. Ketema, G. Lup, J. Taneja,
and J. Regehr, “Souper: A synthesizing superoptimizer,” 2018. [Online].
Available: https://arxiv.org/abs/1711.04422

S. Peng, E. Kalliamvakou, P. Cihon, and M. Demirer, “The impact
of ai on developer productivity: Evidence from github copilot,” 2023.
[Online]. Available: https://arxiv.org/abs/2302.06590

M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. de Oliveira Pinto, J. Kaplan,
H. Edwards, Y. Burda, N. Joseph, G. Brockman, A. Ray, R. Puri,
G. Krueger, M. Petrov, H. Khlaaf, G. Sastry, P. Mishkin, B. Chan,
S. Gray, N. Ryder, M. Pavlov, A. Power, L. Kaiser, M. Bavarian,
C. Winter, P. Tillet, F. P. Such, D. Cummings, M. Plappert, F. Chantzis,
E. Barnes, A. Herbert-Voss, W. H. Guss, A. Nichol, A. Paino, N. Tezak,
J. Tang, I. Babuschkin, S. Balaji, S. Jain, W. Saunders, C. Hesse,
A. N. Carr, J. Leike, J. Achiam, V. Misra, E. Morikawa, A. Radford,
M. Knight, M. Brundage, M. Murati, K. Mayer, P. Welinder, B. McGrew,
D. Amodei, S. McCandlish, I. Sutskever, and W. Zaremba, “Evaluating
large language models trained on code,” 2021. [Online]. Available:
https://arxiv.org/abs/2107.03374

M.-A. Lachaux, B. Roziere, L. Chanussot, and G. Lample, “Unsupervised
translation of programming languages,” 2020. [Online]. Available:
https://arxiv.org/abs/2006.03511

Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou,
B. Qin, T. Liu, D. Jiang, and M. Zhou, “Codebert: A pre-trained model
for programming and natural languages,” 2020. [Online]. Available:
https://arxiv.org/abs/2002.08155

B. Roziere, J. Gehring, F. Gloeckle, S. Sootla, I. Gat, X. E. Tan, Y. Adi,
J. Liu, R. Sauvestre, T. Remez, J. Rapin, A. Kozhevnikov, I. Evtimov,
J. Bitton, M. Bhatt, C. C. Ferrer, A. Grattafiori, W. Xiong, A. Défossez,
J. Copet, F. Azhar, H. Touvron, L. Martin, N. Usunier, T. Scialom, and
G. Synnaeve, “Code llama: Open foundation models for code,” 2024.
[Online]. Available: https://arxiv.org/abs/2308.12950

R. Li, L. B. Allal, Y. Zi, N. Muennighoff, D. Kocetkov, C. Mou,
M. Marone, C. Akiki, J. Li, J. Chim, Q. Liu, E. Zheltonozhskii, T. Y.
Zhuo, T. Wang, O. Dehaene, M. Davaadorj, J. Lamy-Poirier, J. Monteiro,
O. Shliazhko, N. Gontier, N. Meade, A. Zebaze, M.-H. Yee, L. K.
Umapathi, J. Zhu, B. Lipkin, M. Oblokulov, Z. Wang, R. Murthy,
J. Stillerman, S. S. Patel, D. Abulkhanov, M. Zocca, M. Dey, Z. Zhang,
N. Fahmy, U. Bhattacharyya, W. Yu, S. Singh, S. Luccioni, P. Villegas,
M. Kunakov, F. Zhdanov, M. Romero, T. Lee, N. Timor, J. Ding,
C. Schlesinger, H. Schoelkopf, J. Ebert, T. Dao, M. Mishra, A. Gu,
J. Robinson, C. J. Anderson, B. Dolan-Gavitt, D. Contractor, S. Reddy,
D. Fried, D. Bahdanau, Y. Jernite, C. M. Ferrandis, S. Hughes, T. Wolf,
A. Guha, L. von Werra, and H. de Vries, “Starcoder: may the source be
with you!” 2023. [Online]. Available: https://arxiv.org/abs/2305.06161
A. Lozhkov, R. Li, L. B. Allal, F. Cassano, J. Lamy-Poirier, N. Tazi,
A. Tang, D. Pykhtar, J. Liu, Y. Wei, T. Liu, M. Tian, D. Kocetkov,
A. Zucker, Y. Belkada, Z. Wang, Q. Liu, D. Abulkhanov, I. Paul, Z. Li,
W.-D. Li, M. Risdal, J. Li, J. Zhu, T. Y. Zhuo, E. Zheltonozhskii,
N. O. O. Dade, W. Yu, L. Krau$}, N. Jain, Y. Su, X. He, M. Dey,
E. Abati, Y. Chai, N. Muennighoff, X. Tang, M. Oblokulov, C. Akiki,
M. Marone, C. Mou, M. Mishra, A. Gu, B. Hui, T. Dao, A. Zebaze,
O. Dehaene, N. Patry, C. Xu, J. McAuley, H. Hu, T. Scholak, S. Paquet,
J. Robinson, C. J. Anderson, N. Chapados, M. Patwary, N. Tajbakhsh,
Y. Jernite, C. M. Ferrandis, L. Zhang, S. Hughes, T. Wolf, A. Guha,
L. von Werra, and H. de Vries, “Starcoder 2 and the stack v2: The next
generation,” 2024. [Online]. Available: https://arxiv.org/abs/2402.19173
Y. Wei, Z. Wang, J. Liu, Y. Ding, and L. Zhang, “Magicoder:
Empowering code generation with oss-instruct,” 2024. [Online].
Available: https://arxiv.org/abs/2312.02120

D. Guo, Q. Zhu, D. Yang, Z. Xie, K. Dong, W. Zhang, G. Chen, X. Bi,
Y. Wu, Y. K. Li, F. Luo, Y. Xiong, and W. Liang, “Deepseek-coder:
When the large language model meets programming — the rise of code
intelligence,” 2024. [Online]. Available: https://arxiv.org/abs/2401.14196


https://arxiv.org/abs/2501.12948
http://dx.doi.org/10.1038/nature24270
https://github.com/llvm/llvm-project/issues/151303
https://github.com/llvm/llvm-project/issues/151303
https://github.com/llvm/llvm-project/issues/156435
https://github.com/llvm/llvm-project/issues/157238
https://github.com/llvm/llvm-project/issues/157238
https://github.com/llvm/llvm-project/issues/157254
https://github.com/llvm/llvm-project/issues/157254
https://aclanthology.org/2024.tacl-1.9/
https://doi.org/10.1109/CGO57630.2024.10444788
https://openreview.net/forum?id=LWfDcI6txJ
https://arxiv.org/abs/2503.19449
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1904.09751
https://arxiv.org/abs/2503.24290
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/2503.14476
https://arxiv.org/abs/1711.04422
https://arxiv.org/abs/2302.06590
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2006.03511
https://arxiv.org/abs/2002.08155
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2305.06161
https://arxiv.org/abs/2402.19173
https://arxiv.org/abs/2312.02120
https://arxiv.org/abs/2401.14196

[61]

[62]

[63]

[64]

[65]

[66]

[67]

M. Trofin, Y. Qian, E. Brevdo, Z. Lin, K. Choromanski, and D. Li,
“Mlgo: a machine learning guided compiler optimizations framework,”
2021. [Online]. Available: https://arxiv.org/abs/2101.04808

Z. Wang and M. O’Boyle, “Machine learning in compiler optimisation,”
2018. [Online]. Available: https://arxiv.org/abs/1805.03441

H. Leather and C. Cummins, “Machine learning in compilers:
Past, present and future,” 2020 Forum for Specification and
Design Languages (FDL), pp. 1-8, 2020. [Online]. Available:
https://api.semanticscholar.org/CorpusID:221855481

Y. Liang, K. Stone, A. Shameli, C. Cummins, M. Elhoushi, J. Guo,
B. Steiner, X. Yang, P. Xie, H. Leather, and Y. Tian, “Learning
compiler pass orders using coreset and normalized value prediction,”
2023. [Online]. Available: https://arxiv.org/abs/2301.05104

A. Haj-Ali, Q. J. Huang, W. S. Moses, J. Xiang, K. Asanovic,
J. Wawrzynek, and I. Stoica, “Autophase: Juggling HLS phase
orderings in random forests with deep reinforcement learning,” in
Proceedings of the Third Conference on Machine Learning and
Systems, MLSys 2020, Austin, TX, USA, March 2-4, 2020, 1. S.
Dhillon, D. S. Papailiopoulos, and V. Sze, Eds. mlsys.org, 2020.
[Online]. Available: https://proceedings.mlsys.org/paper_files/paper/2020/
hash/5b47430e24a5a1f9fe21f0e8eb814131- Abstract.html

F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G. Fursin, M. O’Boyle,
J. Thomson, M. Toussaint, and C. Williams, “Using machine learning to
focus iterative optimization,” 04 2006, pp. 11 pp.—.

A. F. Zanella, A. F. da Silva, and F. M. Quintdo, “Yacos: a complete
infrastructure to the design and exploration of code optimization
sequences,” in Proceedings of the 24th Brazilian Symposium on
Context-Oriented Programming and Advanced Modularity, ser. SBLP

[68]

[69]

[70]

[71]

[72]

(73]

[74]

755

’20. New York, NY, USA: Association for Computing Machinery, 2020,
p. 56-63. [Online]. Available: https://doi.org/10.1145/3427081.3427089
J. Armengol-Estapé, J. Woodruff, C. Cummins, and M. F. P. O’Boyle,
“Slade: A portable small language model decompiler for optimized
assembly,” 2024. [Online]. Available: https://doi.org/10.1109/CGO57630
2024.10444788

I. Hosseini and B. Dolan-Gavitt, “Beyond the c: Retargetable
decompilation using neural machine translation,” in Proceedings 2022
Workshop on Binary Analysis Research, ser. BAR 2022. Internet Society,
2022. [Online]. Available: http://dx.doi.org/10.14722/bar.2022.23009
H. Tan, Q. Luo, J. Li, and Y. Zhang, “Llm4decompile: Decompiling
binary code with large language models,” 2024. [Online]. Available:
https://arxiv.org/abs/2403.05286

W. K. Wong, H. Wang, Z. Li, Z. Liu, S. Wang, Q. Tang, S. Nie, and
S. Wu, “Refining decompiled ¢ code with large language models,” 2023.
[Online]. Available: https://arxiv.org/abs/2310.06530

X. She, Y. Zhao, and H. Wang, “Wadec: Decompiling webassembly
using large language model,” 2024. [Online]. Available: https:
/larxiv.org/abs/2406.11346

Y. Deng, C. S. Xia, H. Peng, C. Yang, and L. Zhang, “Large
language models are zero-shot fuzzers: Fuzzing deep-learning
libraries via large language models,” 2023. [Online]. Available:
https://arxiv.org/abs/2212.14834

C. Yang, Y. Deng, R. Lu, J. Yao, J. Liu, R. Jabbarvand, and
L. Zhang, “Whitefox: White-box compiler fuzzing empowered by large
language models,” Proceedings of the ACM on Programming Languages,
vol. 8, no. OOPSLA2, p. 709-735, Oct. 2024. [Online]. Available:
http://dx.doi.org/10.1145/3689736


https://arxiv.org/abs/2101.04808
https://arxiv.org/abs/1805.03441
https://api.semanticscholar.org/CorpusID:221855481
https://arxiv.org/abs/2301.05104
https://proceedings.mlsys.org/paper_files/paper/2020/hash/5b47430e24a5a1f9fe21f0e8eb814131-Abstract.html
https://proceedings.mlsys.org/paper_files/paper/2020/hash/5b47430e24a5a1f9fe21f0e8eb814131-Abstract.html
https://doi.org/10.1145/3427081.3427089
https://doi.org/10.1109/CGO57630.2024.10444788
https://doi.org/10.1109/CGO57630.2024.10444788
http://dx.doi.org/10.14722/bar.2022.23009
https://arxiv.org/abs/2403.05286
https://arxiv.org/abs/2310.06530
https://arxiv.org/abs/2406.11346
https://arxiv.org/abs/2406.11346
https://arxiv.org/abs/2212.14834
http://dx.doi.org/10.1145/3689736

	Introduction
	Preliminaries
	Compiler and LLVM IR:
	Supervised Fine-Tuning (SFT).
	PPO vs. GRPO.
	Semantic Equivalence Verification:
	Prompting Setup (Generic Template).

	LLM-VeriOpt: GRPO with Alive2 Verification
	Optimization towards Verifiably Correct Transformations
	Learning from Diagnostic Information
	Training Pipeline
	Diagnostic-augmented Sample Generation (Stage 1)
	Correctness-Oriented Training (Stage 2)
	Incremental Learning for Latency Optimization (Stage 3)


	Experimental Setup
	Training and Test Set Generation
	LLM Inference Strategy
	Metrics

	Evaluation
	[RQ1] Characterizing the Peephole Optimization Capability of Foundation Models
	[RQ2] Evaluating the Effectiveness of LLM-VeriOpt
	[RQ3] Evaluation against LLM/Compiler Baselines
	[RQ4] Analyzing the Contribution of Training Strategies and Prompt Augmentation
	Code Examples

	Discussion
	Related work
	Conclusion
	References

