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Abstract—Large Language Models (LLMs) for compiler opti-
mization have recently emerged as a frontier research direction,
with many studies demonstrating their potential to automate and
improve low-level code transformations. While various techniques
have been proposed to enhance LLMs’ ability to optimize LLVM
IR or assembly code, ensuring the semantic equivalence of
transformed instructions remains a fundamental prerequisite
for safe and effective performance improvement. At the same
time, code generated by LLMs is often so far away from being
correct that it is very difficult to work out how to improve them
to proceed in generating optimizations using the output.

In this work, we present LLM-VeriOpt, a novel reinforcement-
learning methodology that incorporates feedback from a formal
verifier, Alive2, to guide the training of a small-scale model,
Qwen-3B. This facilitates the use of Guided Reinforcement via
Group Relative Policy Optimization (GRPO), using semantic-
equivalence signals from the Alive2 formal verification tool as
part of the reward function. This allows the model to self-correct
based on observing and subsequently learning to give correctness
feedback during training, giving high code coverage by successfully
transforming large amounts of code, while also optimizing it
significantly.

We demonstrate our technique by designing an LLM-based
peephole optimizer over LLVM-IR. Our method significantly
improves the correctness of IR optimizations versus the base
LLM Qwen-3B applied with just a prompt and no fine-tuning —
achieving a 5.4× improvement in code successfully modified. The
resulting model produces verifiably correct output 90% of the
time, comfortably outperforming larger state-of-the-art LLMs,
including Meta’s LLM Compiler. This yields speedups of 2.3×
over O0-optimized code, comparable to the handwritten LLVM
-instcombine pass, and producing emergent optimizations that
outperform it in 20% of cases.

Index Terms—Optimizing Compilers, Large Language Models

I. INTRODUCTION

Modern compilers such as LLVM have accumulated decades

of engineering expertise in order to deliver reliable optimiza-

tions over compiler intermediate representations (IR). However,

they remain constrained by manually designed heuristics and

fixed pass pipelines (e.g., LLVM -O3), which limit exploration

*Affiliation at time of research.

of the vast transformation space and prevent convergence to

globally optimal code [1].

To overcome this bottleneck, researchers have begun to

explore machine-learning–based methods to automatically

discover better optimization sequences, giving rise to the field

of AI for Compiler Optimization. For example, CompilerGym

[2] provides a scalable reinforcement learning environment for

addressing the problem of LLVM pass ordering.

In recent years, Large Language Models (LLMs) have shown

potential in generating novel compiler optimizations. Cummins

et al. [3] conducted large-scale autotuning experiments to

approximate the optimal pass sequence for each program, and

then applied supervised fine-tuning (SFT) to train LLMs to

predict these sequences. Their LLM-Compiler FTD model [4]

outperformed LLVM -Oz in terms of binary size, with the 13-

billion-parameter (13B) model producing smaller binaries in

61% of programs. Recent studies also show that incorporating

reasoning [5], [6] into LLM prompts improves optimization

accuracy and effectiveness.

Beyond pass ordering, finer-grained optimization tasks

have been investigated. Several authors [7]–[9] attempt to

go directly from language (e.g., C/C++) to target output

assembly (e.g., x86). Wei et al. [7] leverage proximal policy

optimization [10] reinforcement learning with Qwen-7B [11] to

optimize assembly code. This achieves correctness in 96% of

the cases (matches behavior of finite input-output samples) and

achieves an average speedup of 1.47×, surpassing the gcc -O3

baseline, though relies on the actual -O3 code being included

in the prompt, otherwise degrading to 0% accuracy. LLM

Compiler’s [12] Compiler Emulation task compiles (reports no

syntax error) LLVM-IR to optimized LLVM-IR with 95.6%

success, but with only 20% exact-match accuracy.

Such techniques suffer from a critical limitation: they do not

strictly guarantee the semantic correctness of the transformed

code. In most prior work [7], [12], correctness was assessed

mainly through finite test suites (equivalence of input-output

pairs over a set of samples, or I/O equivalence), which only

approximate equivalence by testing a finite portion of the
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input domain rather than providing a formal guarantee. This

overestimates correctness; LLM-Vectorizer [13] demonstrates

many cases where formal verification shows inequivalence

of I/O-verified samples. In contrast, traditional compilers

ensure deterministic equivalence, whereas LLMs are prone

to hallucinations [14] that may generate invalid or inconsistent

IR and assembly. This correctness gap represents the main

barrier to deploying LLMs in practical compiler optimization.

LLM-Vectorizer [13] targets the task of vectorization. It

points out that, because it transforms LLVM-IR (intermediate

representation) to LLVM-IR, it is able to use the formal

equivalency checker Alive2 [15] to reject incorrect samples,

verifying 38% of the LLM’s attempts as correct – and allows

the use of existing compiler infrastructure to perform the

transformations from input language to LLVM-IR, and LLVM-

IR to assembly. This is a facilitating observation, as it means

that, on tasks that output LLVM-IR, it is always possible to

either verify correctness formally, or return the original code

on a timeout or equivalence mismatch, meaning the LLM need

no longer be trusted. Still, if the LLM is rarely able to output

(verifiably) correct code, then the ability to optimize is severely

impacted by the remaining unchanged code.

Reinforcement learning with verifiable rewards (RLVR) [16]–

[18] has recently emerged as a promising method for enabling

the self-improvement of LLMs in domains that demand

structured reasoning. Within this framework, Group Relative

Policy Optimization (GRPO) [19] has shown particular promise.

Recent studies have demonstrated its effectiveness in tasks

such as mathematical reasoning [19], where reaching correct

solutions requires multi-step logical reasoning. Compiler op-

timization represents an analogous domain: transformations

must follow rigorous reasoning principles and can be formally

validated. Despite this strong alignment, GRPO has not yet

been explored in this setting.

In this work, we propose LLM-VERIOPT, a reinforcement-

learning framework that integrates Alive2’s semantic equiva-

lence checks into GRPO itself. Alive2 provides trustworthy

verification feedback, which we leverage both as a reward

signal and as learned diagnostic feedback incorporated into

training prompts. This design enables our small-scale model

(Qwen-3B [20], 3-billion parameters) to constantly learn from

counterexamples throughout training, and, combined with also

using Alive2 to verify LLVM-IR code at the backend [13],

gives the potential to not only produce verified code, but to

correct its own mistakes.

We focus on -instcombine [21] in LLVM: the compiler’s

peephole optimization pass. It performs algebraic simplifi-

cations and local transformations within each basic block,

combining multiple instructions into more efficient forms. This

pass is particularly well-suited for LLM-based approaches:

it operates on short instruction sequences, mitigating the

limitations of LLMs in handling large context windows [3].

Moreover, since -instcombine serves as the foundation for more

advanced optimizations, ensuring correctness at this level is

a prerequisite for scaling LLMs to broader compiler tasks.

To evaluate and train our technique over code known to be

challenging to compile correctly, we analyze C/C++ programs

from both the LLVM and GCC test suites.

The main goal of this work is to bridge the correctness

gap in LLM-based compiler optimization by developing

a reinforcement learning framework that integrates formal

verification feedback. Specifically, we show that, with assistance

from formal verifiers, a small-scale LLM can reliably perform

LLVM IR optimizations that are both semantically correct

and efficient, thereby improving reliability beyond supervised

fine-tuning and surpassing the performance of state-of-the-art

models that are orders of magnitude larger.

Our contributions are as follows:

• We introduce LLM-VERIOPT, a novel framework for

verified IR peephole optimization. It builds on Group

Relative Policy Optimization (GRPO) and integrates

Alive2 formal verification feedback directly into the

reward function, thereby guiding reinforcement learning

with semantic correctness guarantees.

• We construct a novel training scheme consisting of four

progressive models: a MODEL-ZERO to analyze LLM-

specific mistakes, a WARM-UP MODEL to bootstrap

the process of training the LLM to generate code and

diagnose its own mistakes, a MODEL-CORRECTNESS

that uses reinforcement learning to optimize towards

generating easily verifiable transformations via generating

progressively higher quality diagnostics, and a MODEL-

LATENCY that preserves highly verifiable transformations

while generating emergent optimization capability.

• We evaluate on a dataset constructed of C/C++ programs

from the LLVM and GCC test suites [22], [23]. We

demonstrate that our method substantially improves the

correctness and optimization performance of a small-scale

model (Qwen-3B [20]), going from producing new correct

code less than 20% of the time with only 0.2% speedup to

one that produces new correct code 90% of the time and

achieves 2.30× speedup. This comfortably outperforms

larger state-of-the-art LLMs, and is comparable to the

real handwritten -instcombine pass (2.39×) while

demonstrating emergent capabilities by producing superior

optimizations 20% of the time.

II. PRELIMINARIES

A. Compiler and LLVM IR:

LLVM [24], a widely used industrial compiler infrastruc-

ture, represents and transforms programs in an intermediate

representation (LLVM IR) that is low-level enough to capture

hardware details while remaining target-independent.

Peephole optimization is a classical compiler technique

that replaces instruction sequences with logically equivalent

but more efficient forms [25]. Typical categories include

null sequence elimination, combining operations, algebraic

simplifications, address mode optimizations, and the use of

special-case instructions [26]. These local transformations are

widely adopted across compilers, as they provide lightweight

performance improvements while preserving correctness.
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In LLVM, the canonical realization of peephole optimization

is the -instcombine pass, which implements thousands

of such algebraic and local transformations [24]. It is a

fundamental component of LLVM’s optimization pipeline and

serves as the foundation for more advanced passes. Given the

context-length limitations of current large language models

[3], -instcombine provides an ideal setting for training

LLMs: the optimization opportunities are local, and instruction

sequences are relatively short, though complexity lies in the

sheer number of optimizations included [27].

B. Supervised Fine-Tuning (SFT).

SFT [28] refers to standard supervised training of the base

model on (input, target) pairs, without reinforcement learning

or preference optimization. In our setting, the target is the

reference IR produced by LLVM’s -instcombine pass. We

use SFT as a baseline to evaluate how much improvement

GRPO with Alive2 feedback can provide.

C. PPO vs. GRPO.

Proximal Policy Optimization (PPO) [10] is the standard

reinforcement-learning algorithm used in aligning large lan-

guage models [29]. However, PPO relies on a separate value

network to estimate absolute reward signals, which introduces

additional model complexity and training overhead. In contrast,

Group Relative Policy Optimization (GRPO) [19] eliminates

the need for a value model by directly comparing multiple

candidate outputs from the same prompt and assigning rewards

based on their relative quality. This design makes GRPO

particularly suited for tasks where feedback is binary or

comparative, such as semantic-equivalence verification.

D. Semantic Equivalence Verification:

Alive2 [15] is an automatic translation-validation tool for

LLVM IR that provides formal guarantees of semantic equiva-

lence between optimized and unoptimized programs. Alive2

relies on SMT (Satisfiability Modulo Theories) solvers which

translate program instructions into algebraical expressions

to check sematic equivalence using SAT or simplex-like

algorithms [13], [30]–[32]. Alive2 is widely regarded [13],

[30]–[32] in the research community as the most practical and

robust translation validation tool for LLVM IR.

Beyond equivalence judgments, Alive2 also provides de-

tailed diagnostic feedback, including syntax-level parsing errors

and semantic mismatches between input and optimized IR. In

our framework, we incorporate error messages into subsequent

training prompts, enabling the model to learn directly from

verification failures.

E. Prompting Setup (Generic Template).

An illustration of the generic prompt template we use for all

comparisons is shown in Fig. 1. We extend this where relevant

for GRPO models that can generate their own intermediate

Chain of Thought (CoT) steps as shown in section III-B. For

supervised fine-tuning (SFT), which cannot reliably do this,

and our GRPO baseline without prompt augmentation, the

simple prompt here is used directly, unless otherwise noted.

<|im_start|>system
You are a helpful AI Assistant that optimizes LLVM IR.
This is a single-turn interaction.
IMPORTANT: The primary objective is to MINIMIZE
LATENCY while keeping the code complete, compilable,
semantically equivalent to the input, and preserving all
metadata.
Respond in the following format:
<answer>
- complete optimized LLVM IR
</answer>
<|im_end|>
<|im_start|>user
{Non-optimized IR}
<|im_end|>
<|im_start|>assistant

   Generic Prompt

Fig. 1: Generic prompt template used for SFT and baseline

GRPO (without augmentation).

We ask the LLM to optimize a full function at a time;

likewise, we verify a full function at a time using Alive2.

We found that liveness information between basic blocks is

unavailable to the LLM if it only sees one block at a time. The

same issue does not exist between functions, where input and

output are controlled via strict interfaces, and so by processing

larger blocks of code at once, we give the LLM sufficient

information to solve the problem.

III. LLM-VERIOPT: GRPO WITH ALIVE2 VERIFICATION

Here we present LLM-VERIOPT, our novel reinforcement-

learning methodology. LLM-VERIOPT integrates Alive2’s

semantic equivalence checker into the GRPO framework, which

enables the model (i) to optimize toward transformations

that Alive2 can prove correct, and (ii) to directly learn from

diagnostic-augmented samples that expose invalid optimiza-

tions. Building on this, we construct a hierarchy of models that

are iteratively trained toward a latency-optimizing solution:

• A MODEL ZERO to bootstrap the process of training

augmented prompts with failure modes tailored towards

the exact failures the underlying LLM makes. The inter-

mediate output of the GRPO process, used to optimize

towards accuracy, produces a wide dataset of failures, and

combined with Alive2, the reasons for them.

• A WARM-UP MODEL generated via supervised fine-

tuning (SFT) that mimics the process of providing Alive2

feedback on its own optimized output. This takes both

the original -instcombine training set and MODEL

ZERO’s failures, and tries to produce either a) the correct

answer directly, or b) the wrong answer, an Alive2-style

explanation, followed by the correct answer.

• A GRPO-optimized MODEL-CORRECTNESS that maxi-

mizes the chance of generating a correct transformation.

This iteratively trains both the Alive2 feedback emulation
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and the code-generation phases, such that error detection

and correction gradually improve. This continues to the

degree that ultimately no explicit error correction is

needed, as it produces the right answer the first time

by learning to avoid its common errors in the first place.

• Finally, a MODEL-LATENCY that preserves the accuracy

of MODEL-CORRECTNESS while changing optimization

criteria to explore and improve the performance of

optimized code, while preserving semantic equivalence but

removing incentives to exactly match -instcombine.

A. Optimization towards Verifiably Correct Transformations

For each non-optimized IR, the policy generates

multiple candidate transformations. We form pairs

(Non-optimized,Candidate) and query Alive2 for semantic

equivalence. Alive2 outcomes are incorporated into GRPO

training as reward signals.

The overall reward is defined in a hierarchical manner.

ri = ti

(

1 + ai
(

1 +mi

)

)

+ bi, (1)

where

ti ∈ {0, 1}, completion-format compliance,

ai ∈ {0, 1}, Alive2 semantic equivalence,

mi ∈ {0, 1}, exact match with the reference IR,

bi ∈ [0, 1], BLEU [33] similarity score.

The intuition is that a) correctness is highest priority to

generate LLM-optimized code that can be externally verified

with non-negligible chance, b) the function is continuous

as a result of using BLEU scores [33], so that there is a

steady incentive gradient for learning on, c) both similarity

to InstCombine, and latency-reduction on code are used as

tiebreakers whenever the code is correct, to disincentivize the

input being returned as output. To be specific, outputs are

required to satisfy the specified prompt format (ti), semantic

correctness is determined through Alive2 verification (ai), and

exact matches with the reference IR (mi) are credited only

when equivalence holds. The BLEU score [33] (bi), based on

the similarity of code and where a score of 1 indicates an exact

match, offers feedback for partially correct outputs and thus

alleviates the sparsity of purely discrete rewards, providing a

continuous shaping signal to mitigate gradient starvation [34].

Producing correct (or optimized) code is not the same thing

as producing identical code to -instcombine, and thus

attempting to match it only forms part of the reward (via BLEU

similarity and exact-match score). We reward alternatives that

are (verifiably, via Alive2) correct as being superior to incorrect

answers, and exact mimicry as superior to alternative semantic

matches. Entirely incorrect output formats are least rewarded,

and matches that are not semantically equivalent but are partly

similar to -instcombine get partial credit by BLEU scoring.

This basic correctness reward is reused in various forms

throughout our training pipeline: to incentivize producing

correct code, to incentivize producing correct error messages

when the code is wrong, and to incentivize producing correct

corrections to wrong code in response to error messages. These

are explored further in future sections. In addition, we also

introduce rewards to optimize correct code to choose more

preferable optimizations from the wide set of correct answers

once we have a reliable LLM in section III-C3.

B. Learning from Diagnostic Information

Beyond serving as a correctness oracle, Alive2 also produces

diagnostic information that we incorporate into training. These

messages allow us to emulate Alive2-style diagnostic feedback,

which in turn guides the model toward generating more correct

output. For each failed pair (Non-optimized,Candidate), Alive2

returns diagnostic feedback, which we combine with the input

IR, the incorrect candidate, and the reference label (from

-instcombine) to form diagnostic-augmented samples for

training.

Fig. 2 shows this augmented prompt format. We extend the

generic prompt from section II-E by introducing the <think>

tag and embedding the Alive2-diagnostic-augmented samples

(first attempt and error message if wrong) within this section,

so that the model is exposed to diagnostic feedback during

training. The output of this prompt can take two forms: either

a direct, correct answer in a single attempt with an emulated

Alive2 successful equivalence, or an incorrect answer, followed

by a diagnostic error message. Both are followed by a final

corrected answer. We prefer the correct answer first-time, but

partially reward the wrong answer followed by correction, in

order to bootstrap our GRPO models to progressively become

more able to generate the former as they learn to diagnose

bugs via generating the latter. This modified prompt is used

for our two intermediate models: the WARM-UP MODEL and

MODEL CORRECTNESS (section III-C2).

C. Training Pipeline

Figure 3 presents a detailed overview of our training

pipeline. The entire process starts from the pretrained

Qwen2.5-3B-Instruct [20] base model. The pipeline is

organized into three main stages and four models:

1) Diagnostic-augmented Sample Generation (Stage 1): A

direct application of GRPO on the small-scale foundation model

often collapses due to the sparsity of positive rewards: most

candidate optimizations fail Alive2 checks and provide little

useful gradient (section V-D). To address this, we deliberately

run an initial GRPO phase using the generic prompt (fig. 1) to

obtain a preliminary policy, denoted MODEL ZERO, following

DeepSeek [35]. Although not a satisfactory optimizer, MODEL

ZERO plays a crucial role as a diagnostic-augmented sample

generator. Rather than using MODEL ZERO itself, we observe

the GRPO training space while producing it and, through

Alive2 validation, produce concrete diagnostic information

based on the intermediate outputs. Importantly, these diagnostic-

augmented samples are model-adaptive: they directly reflect

the systematic weaknesses of Qwen-3B when applied to IR

optimization. By reinjecting them into the training process

as Augmented Prompts (fig. 2), with wrong code, diagnostics,

and the correct output (correction-augmented samples) along
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Diagnostic-Augmented Samples
Diagnostic-Augmented Samples

<|im_start|>system...
Respond in the following format: <think><think><answer></answer>
<|im_start|>user
{Non-optimized LLVM-IR}
<|im_start|>assistant
<think>

</think>
<answer>
{Corrected LLVM-IR}
</answer>

[1] Candidate IR:
define dso_local i32 @test2(i32 noundef %0) { ... }
[2] Check:
error: multiple definition of local value named 'storemerge'
%storemerge = phi i8 [ %4, %3 ], [ %storemerge, %5 ]
^.
[4] Revised IR (from Reference Label):
define dso_local i32 @test2(i32 noundef %0) { ... }
[5] Check (final):
Passed (semantically equivalent).

Augmented Prompt Diagnostic-Augmented Samples

Diagnostic
informationFirst-time augmented samples

[1] Candidate IR (from Reference Label)
define dso_local i32 @test2 ...

[2] Check (final):
Passed (semantically equivalent).

First-time augmented samples

Fig. 2: We train the LLM to generate diagnostic error messages based on its initial mistakes, and produce corrected output

based on the result. The initial dataset of diagnostic-augmented samples is generated by the wrong answers produced by an

attempt to apply GRPO directly to Qwen-3B with the generic prompt (fig. 1), Alive2’s response to them, and the actual intended

-instcombine output. The wrong attempt, and the error diagnosis are inside the <think> block. The corrected answer is

inside the <answer> block. We also include samples of the original O0-instcombine pairs, with the -instcombine answer

inside the think block and as the output, to represent the preferred case when the LLM gets the answer right first time.

Qwen 3B

GRPO with Overall
Reward 

Model Zero

Diagnostic-
Augmented

Prompt

SFT

GRPO with CoT Reward

Warm-up Model

Model-Correctness Model-Latency

GRPO with Latency
Reward

Generic
Prompt

Stage 1 Stage 2 Stage 3

Generic
Prompt

Fig. 3: The training pipeline: from MODEL ZERO (diagnostic-augmented sample generator) and WARM-UP MODEL (SFT on

diagnostic-augmented samples), through GRPO with augmented prompts to obtain MODEL-CORRECTNESS, and subsequent

incremental learning yielding the final MODEL-LATENCY.

with the original training data of O0-instcombine pairs (first-

time augmented samples), we enrich the otherwise sparse

supervision with error signals that are maximally relevant to the

model itself, laying the foundation for subsequent correctness-

oriented training.
2) Correctness-Oriented Training (Stage 2): Even with

augmented prompts, directly applying GRPO remains unstable

because the foundation model lacks basic error-recognition

capability. In particular, it cannot reliably distinguish invalid

or semantically incorrect IRs, nor can it produce diagnostic

information that explains why the output fails verification.

We therefore introduce a Warm-up stage1: supervised fine-

tuning (SFT) on the augmented prompts, in order to emulate

the response of Alive2 inside the decision-making process.

The WARM-UP MODEL equips the policy with rudimentary

diagnostic skills and serves as a stronger initializer. The input to

the Warm-up stage’s SFT are the augmented samples described

in fig. 2: both first-time augmented samples, which get the

answer right immediately, and correction-augmented samples

that get the answer wrong, diagnose it, and then correct it.

1This mirrors the strategy in AlphaGo [36], where supervised initialization
provides a reliable policy prior to reinforcement learning.

For each code input, there will be one first-time augmented

sample and potentially several correction-augmented samples

depending on how many different ways the GRPO training of

MODEL ZERO failed. The WARM-UP MODEL is not trained

with any preference between these, outputting whichever of

these several possible outputs is easiest for it to generate.

Building on this, we apply GRPO with augmented prompts,

guiding the model to autonomously generate improved candi-

date IRs and improved validation of their semantics2. This stage

culminates in MODEL-CORRECTNESS, a policy optimized to

maximize Alive2-verified semantic equivalence. As shown in

Figure 4(a), correctness steadily improves as GRPO progresses

from the WARM-UP MODEL.

Just as in the training data, the correct answer can be derived

either from getting the answer right immediately inside the

<think> block (as in the first-time samples), or getting the

answer wrong inside the think block, correctly diagnosing the

issue, then fixing it (as in the correction samples). This creates

a joint optimization between rewarding a) correct optimization

in one shot, b) correct diagnostic information when the first

2As new types of error appear as the LLM gets gradually better at producing
code, Alive2 is constantly reconsulted and learned from.
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attempt is wrong, and c) correct output on the second attempt.

The principles follow the same reward function in section III-A.

Inside the <think> tag, where an augmented prompt makes

its first code attempt and a diagnosis if wrong, we assign

a Chain of Thought (CoT) reward. Let A(S, T ) denote the

Alive2 judgment of the model’s candidate IR T against the

source S, returning either OK (semantically equivalent) or

ERR (not equivalent). The model also produces a self-diagnosis,

including optional feedback text Fmodel, while Alive2 provides

its diagnostic message Falive.
The Chain of Thought(CoT) reward is defined as:

R =











1, if both agree on OK,

0.5 + 0.5 · BLEU(Fmodel, Falive), if both agree on ERR,

0, otherwise.

(2)

Thus, agreement on correctness yields full reward, agreement

on errors yields a partial reward proportional to the similarity

of explanations, and disagreement yields zero reward.

For the <answer> block, the score matches Equation (1)

(section III-A). The final score sums these two components3.

3) Incremental Learning for Latency Optimization (Stage 3):

While MODEL-CORRECTNESS ensures semantic equivalence,

it does not address runtime performance. To push further, we

incrementally fine-tune MODEL-CORRECTNESS with a latency-

oriented reward to generate MODEL-LATENCY. As illustrated

in Figure 4(b), this stage drives the policy toward generating

lower-latency code while maintaining correctness.

At this point, we stop using labeled -instcombine

data in order to allow GRPO to explore policies that are

potentially more optimal than the original -instcombine.

We still maintain correctness in terms of a reward function that

incentivizes only semantic equivalence to Alive2 rather than

the similarity to -instcombine encoded in section III-A.

The scale of reward is based on the relative speedup between

baseline latency t(P ) (at -O0) and candidate latency t(P ′):

u =
t(P )

t(P ′)
, u ∈ (0,∞). (3)

rlat =







0, if S = 0 or u ≤ 1,
(

min
(

1, u−1

Umax−1

))γ

, if S = 1 and u > 1.
(4)

Here, u is the speedup ratio, S is the semantic equivalence

check, γ > 1 a convex shaping factor, and Umax the saturation

threshold. For reward normalization, we set γ > 1 to

emphasize larger speedups, and set Umax as the 80th percentile

of LLVM -instcombine’s speedups on the training set.

Output of Alive2-error emulation is also dropped as part

of this model (but Alive2 is not dropped from the reward

3A wrong code sequence inside the <think> block followed by the correct
error message, followed by the correct answer (matching the correctness-
augmented samples) in theory gets the same score as getting the answer right
the first time and repeating it in the answer block (matching the first-time
augmented samples). However, since the former involves getting a tricky
sequence of error messages correct, we find that the latter format, where the
<think> code is correct, ends up being incentivized as the model becomes
more able to correct its own errors, so the model becomes better at getting
code right the first time. This allows us to then drop the <think> stage for
the next model, MODEL-LATENCY.

(a) Correctness-oriented stage.

(b) Latency-oriented stage.

Fig. 4: Training dynamics of GRPO under different reward

settings. The dashed line shows the raw latency speedup reward;

the solid line shows the EMA-smoothed (0.95) curve.

function), since we never directly use the error output and

to avoid wasting generation capacity of the finite-parameter

LLM model on useless output, returning to the original generic

prompt (fig. 1) rather than the augmented error prompt (fig. 2)

as output. However, we can infer from the lack of an accuracy

drop (section V-D) that the error emulation that powers the

GRPO of Model-Correctness, and lets it outperform MODEL

ZERO, is preserved internally inside the model’s capabilities.

IV. EXPERIMENTAL SETUP

A. Training and Test Set Generation

We train and evaluate LLM-VeriOpt by constructing a dataset

from the LLVM [22] and GCC [23] test suites. These suites

have long served as standard validation workloads for compiler

research, as they are explicitly designed to cover a wide range

of optimization patterns and to reveal hidden bugs in corner

cases. We use these benchmarks to enable the model to cover

diverse optimization combinations, including edge cases, and

thereby improve its generalization ability, as well as to evaluate

it over challenging code.

We first compile the source programs into LLVM IR

using the clang/clang++ frontend. The non-optimized IR

is obtained by invoking opt with the -O0 flag, while the

optimized IR is generated with opt -instcombine, which

applies a series of peephole optimizations. We then use

llvm-extract to split IR into individual functions, so that

each serves as a self-contained training example.
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For training, we focus on the subset of functions whose -O0

and -instcombine forms are proven semantically equivalent

by Alive2. Pairs that are inequivalent4, trigger undefined

behavior, or cause verification timeouts are excluded5. For

validation, we construct an independent dataset of 4,386 LLVM

IR functions derived from the same GCC and LLVM test suites.

This dataset is strictly isolated from the training set to avoid

any data leakage, and its construction otherwise follows the

methodology above.

B. LLM Inference Strategy

We adopt greedy decoding [45] as our sole inference strategy,

to to ensure that repeated inferences on the same input IR

yield identical outputs, eliminating reproducibility issues (in

e.g., stochastic or temperature-controlled strategies [46]). Our

choice follows the setup in LLM-Compiler [4]. We utilize four

common modifications to stabilize/simplify GRPO training:

1) Removal of the KL penalty. Recent studies (e.g., Open-

Reasoner-Zero [47]) suggest that Kullback–Leibler (KL)

divergence [48] penalty is not essential for training with

GRPO. By eliminating the KL term, the policy is allowed

to explore IR transformations more aggressively. Instead

of KL regularization [49], we rely on gradient clipping

to maintain stability during training.

2) Single-update objective. Since our training data is

abundant and easy to collect, there is no need to perform

multiple gradient updates on the same batch of rollouts.

To avoid amplifying noise, we do not adopt the multi-

update clipped surrogate objective [10]; hence, our

objective reduces to the single-update formulation.

3) Token-Level Loss Normalization. In the original GRPO

paper [19], the loss is first averaged within each sample

and then averaged across samples, assigning equal weight

to each sample regardless of its length. This introduces a

length bias: long sequences are under-penalized and short

responses under-rewarded, leading the model to prefer

excessively long outputs. DAPO [50] highlights this and

proposes a token-level normalization scheme, in which

the loss is normalized by the total number of tokens

across the global batch rather than by sequence length.

This adjustment ensures that every token contributes

equally, mitigating length bias.

C. Metrics

We characterize IR optimizations along two dimensions:

correctness and efficiency. These metrics serve dual roles: some

are used purely for evaluation, while others also act as reward

signals during training.

4As of writing, due to -instcombine’s complexity it is quite common
for it to produce code that Alive2 can prove is an invalid transformation, with
many open issues [37]–[40] on GitHub.

5Since prior studies have shown that large language models tend to degrade
in performance when operating over very long context windows [41], we
restrict the context window in 2048 tokens in our experiments. Specifically,
we tokenize all IR using the Qwen-3b tokenizer and filter out samples with
more than 2048 tokens. Similar practices have also been adopted in prior work
on machine learning-based compiler optimization and neural lifting [3], [12],
[42]–[44]. Finally, our final training set comprises 34,190 function pairs.

Correctness. Semantic equivalence is the strongest indicator

of correctness in LLVM IR: when two IR programs are

semantically equivalent, compilation is guaranteed to succeed.

We rely on the Alive2 validator to formally check equivalence

between the input and optimized IR. Alive2 outcomes are

categorized into four cases:

1) Syntactic error: invalid IR, non-compilable.

2) Semantic error: compilable but changes behavior.

3) Inconclusive: Alive2 cannot prove equivalence.

4) Semantic equivalence: formally proven equivalent.

Efficiency. Beyond correctness, we report three efficiency

metrics to quantify the effectiveness of IR optimizations:

- Estimated Latency: Execution latency is

estimated for each IR module on an AArch64

target. For each instruction, we query LLVM’s

getInstructionCost(...,TCK_Latency) API

(LLVM 21.0.0git) to obtain estimated latency, and then sum

all instructions to yield module-level latency6.

- Instruction Count (ICount): Number of LLVM IR

instructions in a module, reflecting program size at IR level.

- Binary Size: Following Cummins et al.’s LLM-Compiler

methodology [4], we measure binary size as the on-disk size

(in bytes) of the compiled object file. We sum the .TEXT and

.DATA sections reported by llvm-size, while excluding

the .bss section since it does not contribute to file size.

V. EVALUATION

We address the following research questions:

RQ1 (Foundation Capability): Can pre-trained foundation

models effectively perform peephole optimization while pre-

serving semantic equivalence, with no further fine-tuning? A1:

While accuracy looks superficially high at 73.2%, we find

that the vast majority of these cases result in the input being

returned as output, producing different correct output from

-O0 in only 16.4% of cases.

RQ2 (Optimization Effectiveness): Do the optimizations

produced by LLM-VERIOPT improve code behavior under

correctness constraints? A2: LLM-VERIOPT produces different

correct output in 90% of cases. It improves performance in

84% of cases, instruction count in 86% of cases, and code size

in 80% of cases, all with verifiably correct output. While the

foundation model produces 16.4% different correct cases, it

only improves performance in 1.2% of cases relative to -O0.

RQ3 (Competitiveness): How does LLM-VERIOPT com-

pare with both LLM-based compilers and the traditional

LLVM -instcombine pass? A3: LLM-VERIOPT outper-

forms standard supervised fine-tuned models that are over 10×
larger in parameter size, in both correctness and performance

improvement. Its performance improvement is comparable to

6This is an approximation of latency, which would fail with more complex
transformations than peephole, such as loop unrolling where static instruction
count would grow, or where different instructions in the real pipeline would
conditionally overlap in ways that would affect the best result (which could be
fixed by switching to pipeline-aware latency measurements such as via LLVM-
mca. Still, since we only try to approximate peephole-style optimizations, the
output produces good results in practice (see section V-E), and other peephole
techniques e.g. Souper [51] use even simpler latency metrics.
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TABLE I: Alive2 verification results of baseline Qwen-3B.

Category Count Proportion (%)

Correct (Alive2 verified) 3,210 73.2
– Copy of input (no optimization) (2,490) (56.8)

Semantic Error (Not Equivalent) 185 4.2
Syntax Error (Invalid IR) 927 21.1
Inconclusive 64 1.5

LLVM’s handwritten -instcombine pass (2.30× speedup

vs 2.39×) and produces superior results in 20.1% of cases,

demonstrating LLM-VERIOPT’s ability to produce emergent

optimizations not included in the -instcombine-generated

training set. With a fallback for when the LLM-VERIOPT

output is worse, the net performance improvement is 17%

relative to -instcombine alone.

RQ4 (Ablation): What is the contribution of design choices

behind the hierarchy of models, including supervised warm-up

and diagnostic-augmented sample-based prompt augmentation

presented in section III-C? A4: Each of the four progressive

sub-models gives critical progressive contributions towards all

of latency, instruction count, binary size, and correctness.

A. [RQ1] Characterizing the Peephole Optimization Capability

of Foundation Models

We conducted an experiment with baseline Qwen-3B (i.e.,

without our verification-guided GRPO) to evaluate its correct-

ness in generating IR under peephole optimization. Correctness

was assessed using Alive2 to verify semantic equivalence.

In these initial experiments, we directly applied the generic

prompt shown in Figure 1. For a small subset of test cases, we

observed that the model frequently failed to generate outputs

in the required format (with the <answer> tag) and produced

IR that was largely syntactically invalid. To obtain meaningful

statistics, we refined the prompting strategy by introducing

one-shot learning: providing a sample pair of input IR and

its optimized output. This adjustment enabled the model to

consistently follow the required format and slightly improved

correctness. The results are summarized in Table I.

Qwen-3B produced Alive2-verified IR for 73.2% of the

cases. However, a large fraction of these (56.8%) were trivial

copies of the input IR with no optimization applied7. The actual

rate of semantically correct different (thus potentially useful)

optimizations was therefore much lower at 16.4%. Additionally,

21.1% of the outputs were syntactically invalid and could not

be parsed as legal IR, 4.2% were identified as semantically

incorrect, and 1.5% were inconclusive.

B. [RQ2] Evaluating the Effectiveness of LLM-VERIOPT

Table II summarizes the Alive2 verification results of

the LLM-VERIOPT models. Excluding trivial copies of the

input, MODEL-CORRECTNESS successfully improves 88.2%

7While these answers are correct, they are no more useful than the prompt
“please return the input as the output”, which would have near-100% accuracy
but no optimization capability. Sometimes the output of peephole optimization
should be identical to the input, as no further optimization can occur – but
for -instcombine this was not true for any of the samples in our test set.

TABLE II: Alive2 verification results of Qwen-3B augmented

by LLM-VERIOPT models.

Category Model-Correctness Model-Latency

Count % Count %

Correct 3,926 89.5 3,940 89.9
– Copy of input (no opt.) (59) (1.4) (67) (1.5)

Semantic Error 227 5.2 237 5.4
Syntax Error 161 3.7 132 3.0
Inconclusive 72 1.6 66 1.5

TABLE III: Per-sample outcome counts vs. LLVM -O0 (smaller

= better). The last column reports the mean relative change

against -O0 (negative = improvement).

Metric Model Better Worse Tie Total Mean ∆ vs -O0

Latency
Latency 3696 0 690 4386 −50.68%

Correctness 3556 1 829 4386 −38.22%

Qwen-3B 53 40 4293 4386 −0.19%

Size
Latency 3528 105 753 4386 −17.37%

Correctness 3416 50 920 4386 −14.25%

Qwen-3B 64 31 4291 4386 −0.15%

ICount
Latency 3748 0 638 4386 −45.64%

Correctness 3630 0 756 4386 −33.70%

Qwen-3B 62 32 4292 4386 −0.12%

of samples, which is over 5.4× higher than Qwen-3B (16.4%).

We further evaluate the MODEL-LATENCY to examine whether

incremental learning compromises IR correctness, and find that

its correctness remains stable.

We further evaluate the models in terms of Instruction

Count, Latency, and Binary Size. For outputs that pass Alive2

verification, we directly compute performance metrics; if

verification fails, we fall back to the LLVM -O0 version.

The results are shown in Table III. MODEL-LATENCY

achieves a substantial reduction in latency: relative to LLVM

-O0, the improvement is also significant. By contrast the

foundation model rarely generates useful code: while the

different accurate (thus potentially useful) rate is 16.4% as

discussed in section V-A is already low, the proportion of

code that is actually improved (rather than different but the

same latency or higher) is just 1.2%, and rarely is any

function improved significantly, resulting in only a 0.19%

mean improvement in latency. Instruction count is also greatly

reduced, with MODEL-LATENCY achieving an average decrease

of 45.6% relative to LLVM -O0, and an average reduction of

17.4% in binary size relative to LLVM -O0.

C. [RQ3] Evaluation against LLM/Compiler Baselines

Versus LLM-based compilers: We compare LLM-

VERIOPT against a range of LLM-based compilers, covering

both supervised fine-tuning (SFT) baselines and state-of-the-art

LLMs. Since small- and medium-scale LLMs exhibit limited

capability in optimizing LLVM IR out-of-the-box, we perform

SFT to ensure a fair comparison. For all SFT baselines, we

adopt the generic prompt template illustrated in Figure 1 and

train on the same dataset as LLM-VERIOPT until convergence,

selecting the best checkpoint for evaluation. We further compare
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(a) Latency (geomean improvement over -O0, higher better). (b) Correctness rate.

(c) Instruction count (geomean versus -O0, lower better). (d) Binary size (geomean versus -O0, lower better).

Fig. 5: Comparative performance of LLM-VERIOPT and baseline LLM-based compilers, presented in parameter-size order

(in billions). Improvements for latency, binary size, and instruction count are reported as geomean relative to LLVM -O0.

Correctness is measured as the percentage of semantically equivalent outputs verified by Alive2.

against a state-of-the-art model without task-specific fine-tuning:

Cummins et al.’s LLM-Compiler-7B [4].

As shown in fig. 5, MODEL-LATENCY achieves the best

results on latency, inst-count, and accuracy, even outperforming

larger models such as Qwen-32B8. Larger models generally

perform better, yet the small-scale MODEL-LATENCY bucks

this trend, surpassing all baselines across most metrics.

Versus LLVM: In Figure 6, we compare LLM-VERIOPT’s

MODEL-LATENCY and LLVM’s -instcombine across La-

tency, ICount, and Binary Size. Panels (a) and (b) show that

LLM-VERIOPT achieves improvements over -O0 that are

broadly similar to those of -instcombine, indicating that

the model has successfully learned to match the optimization

capability of a hand-engineered pass. Panel (c) further compares

LLM-VERIOPT directly with -instcombine: for latency -

the primary optimization target - LLM-VERIOPT outperforms

-instcombine in 20.1% of functions, underperforms in

22.6%, and ties in 57.3%, with similar patterns observed

for the other two metrics. Crucially, the cases where LLM-

VERIOPT surpasses -instcombine cannot be attributed to

memorization: the model was trained using labels generated by

-instcombine, thus these additional gains are likely enabled

by reinforcement learning.

MODEL-LATENCY achieves a geomean 2.30× speedup

versus -O0, highly comparable with -instcombine’s 2.39×
speedup. With a fallback, using model-generated IR only

when it outperforms -instcombine, we achieve significant

geomean improvements: latency 17% gain, instruction count

13.9%, and binary size 2.1%.

8Qwen-32B attains the best improvement in size: unsurprising since LLM-
VERIOPT’s reinforcement learning only implicitly optimizes for it via latency
correlation (section III-C3); other reward functions yield different outcomes.

D. [RQ4] Analyzing the Contribution of Training Strategies

and Prompt Augmentation

We ablate the effect of incorporating Alive2-derived diagnos-

tic information into both training and prompting. Specifically,

we compare the four models presented in section III: (i) MODEL

ZERO (GRPO-trained without Alive2 feedback, section III-C1),

(ii) the WARM-UP MODEL, section III-C2, trained by super-

vised fine-tuning from MODEL ZERO’s diagnostic-augmented

samples, and (iii) MODEL-CORRECTNESS (also section III-C2),

using GRPO to progressively improve Alive2 feedback em-

ulation and code correctness combined, and the final LLM-

VERIOPT mechanism, MODEL-LATENCY, improving MODEL-

CORRECTNESS by incremental learning to induce a latency-

oriented reward without losing correctness (section III-C3. As

shown in fig. 7, each stage adds critical improvements. MODEL

ZERO alone is already effective compared with the base Qwen-

3B, which table III shows gains less than 0.2% on latency,

instruction count and binary size9. The WARM-UP MODEL

boosts speedup by boosting accuracy, meaning more code gets

successfully modified and improved, by gaining a rudimentary

ability to predict and fix bugs. MODEL-CORRECTNESS takes

this a step further by co-optimizing bug-finding and code-

generating capability via GRPO. Finally, MODEL-LATENCY

builds on this further by retargeting the code to improve

latency rather than just mimic -instcombine. In fact,

MODEL-LATENCY also gets a better accuracy than MODEL-

CORRECTNESS despite additional latency optimization criteria:

9This is despite MODEL-ZERO’s semantic accuracy (50.1%) being lower
than Qwen’s 73.2% meaning it leaves more code at its unprocessed baseline
performance, but as we discuss in section V-A, this is because the Qwen
baseline makes no meaningful attempt to actually emulate instcombine or
optimize the code, instead just repeating the input in the majority of cases it
returns a valid answer, being vacuously correct.
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Fig. 6: Pairwise distributions of optimized IR against baselines across Latency, Instruction Count and Binary Size.

Fig. 7: Ablation study: geomean improvements (vs -O0, higher is better) for Latency/ICount/Binary Size (left axis) and

Correctness (%) (right axis). We compare four variants: MODEL ZERO, a GRPO-trained 3B model with generic prompts; the

WARM-UP MODEL, supervised fine-tuned on augmented prompts; the MODEL-CORRECTNESS; and the MODEL-LATENCY.

we attribute this to the fact that MODEL-LATENCY does not

have to waste its very finite parameter budget on producing

actual error messages because they are no longer needed once

MODEL-CORRECTNESS has finished using them for its GRPO,

allowing MODEL-LATENCY to retain them only implicitly to

preserve its reasoning capability.

E. Code Examples

LLM-VeriOpt sometimes reduces complex control/data flow

into a single return value where InstCombine does not (fig. 8).

Many emergent optimizations involve complex value propaga-

tion, including fig. 9. Figure 10 appears to be learning elements

of other LLVM passes (simplifycfg, we also saw mem2reg-

like behavior) from the reward function and Alive-correctness

alone, without explicit finetuning training data and despite base

models failing to do so. VeriOpt does not spot all InstCombine

patterns, perhaps from training-set limitations and from too few

model parameters to fully represent InstCombine: fig. 11 misses

a truncation, and in fig. 12 InstCombine fully precalculates

unlike VeriOpt, likely from GRPO discouraging VeriOpt from

attempting arithmetic LLMs are poor at.

VI. DISCUSSION

On the role of GRPO without explicit reasoning. Al-

though GRPO is often intended to encourage models to

autonomously generate an explicit chain of thought, in our

InstCombine:

% s t r u c t . S = type { i32 , i 3 2 }
d e f i n e d s o l o c a l i 6 4 @get d ( ) #0 {

%1 = a l l o c a i64 , a l i g n 8

%tmpcast = b i t c a s t i 6 4 * %1 to

% s t r u c t . S*
%2 = b i t c a s t i 6 4 * %1 to i 3 2 *
s t o r e i 3 2 0 , i 3 2 * %2, a l i g n 8

%3 = g e t e l e m e n t p t r inbounds

% s t r u c t . S , % s t r u c t . S*
%tmpcast , i 6 4 0 , i 3 2 1

s t o r e i 3 2 0 , i 3 2 * %3, a l i g n 4

%4 = load i64 , i 6 4 * %1, a l i g n 8

r e t i 6 4 %4

}

LLM-VeriOpt:

d e f i n e d s o l o c a l i 6 4

@get d ( ) #0 {
r e t i 6 4 0

}

Fig. 8: Simplification to 0.

experimental setting, this mechanism did not function as

expected. Instead, we primarily relied on manually constructed

reasoning chains—namely, augmented prompts that embed

Alive2 diagnostic information—serving as “externally provided

chains of thought” rather than model-generated ones. The

underlying cause lies in model scale: our 3B-parameter model

lacks sufficient prior knowledge of LLVM IR to produce

coherent and meaningful reasoning steps. During training, the

chain of thought generated autonomously by the model is

typically noisy and uninformative, and thus contributed little to

improving optimization capability. We hypothesize, however,

that when applied to larger foundation models with richer IR
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InstCombine:

d e f i n e d s o l o c a l i 6 4 @f28 ( i 6 4

noundef %0, i 6 4 noundef

%1) #1 {
%3 = a l l o c a i64 , a l i g n 8

%4 = add i 6 4 %0, %1

s t o r e i 6 4 %4, i 6 4 * %3,

a l i g n 8

%. n o t = icmp ugt i 6 4 %4, %0

br i 1 %. not , l a b e l %6,

l a b e l %5

5 : c a l l vo id @foo ( i 3 2 noundef

0 ) #2

br l a b e l %6

6 : %7 = load i64 , i 6 4 * %3,

a l i g n 8

r e t i 6 4 %7

}

LLM-VeriOpt:

d e f i n e d s o l o c a l i 6 4 @f28 ( i 6 4

noundef %0, i 6 4 noundef

%1) #1 {
%3 = add i 6 4 %0, %1

%4 = icmp uge i 6 4 %0, %3

br i 1 %4, l a b e l %12 , l a b e l

%13

1 2 : c a l l vo id @foo ( i 3 2 0)

br l a b e l %13

1 3 : r e t i 6 4 %3

}

Fig. 9: VeriOpt removes redundant allocas, stores and loads.

InstCombine:

d e f i n e d s o l o c a l i 3 2 @opt u1 (

i 3 2 noundef %0) #0 {
%2 = a l l o c a i32 , a l i g n 4

s t o r e i 3 2 %0, i 3 2 * %2,

a l i g n 4

%3 = icmp u l t i 3 2 %0, 10

br i 1 %3, l a b e l %4, l a b e l

%5

4 : br l a b e l %10

5 : %6 = load i32 , i 3 2 * %2,

a l i g n 4

%7 = add i 3 2 %6, −12

%8 = l s h r i 3 2 %7, 2

%9 = add nuw nsw i 3 2 %8, 3

br l a b e l %10

1 0 : %storemerge = phi i 3 2 [

%9, %5 ] , [ 0 , %4 ]

r e t i 3 2 %storemerge

}

LLM-VeriOpt:

d e f i n e d s o l o c a l i 3 2 @opt u1 (

i 3 2 noundef %0) #0 {
%2 = icmp u l t i 3 2 %0, 10

br i 1 %2, l a b e l %8, l a b e l

%9

8 : r e t i 3 2 0

9 : %10 = sub i 3 2 %0, 12

%11 = udiv i 3 2 %10 , 4

%12 = add i 3 2 %11 , 3

r e t i 3 2 %12

}

Fig. 10: Emergent learning of simplifycfg-style behavior.

semantic knowledge (e.g., a 32B-parameter model), GRPO

could potentially elicit more coherent self-generated reasoning

chains, which may lead to stronger optimization performance.

Limitations of Alive2. We found a couple examples in the

test-set where Alive2 gets the answer wrong, likely because of

Alive2’s well-documented limitations around loop analysis [15].

This was very rare seemingly because InstCombine does not

do complex loop transformation, nor does our reward function

incentivize it appearing emergently, meaning changes appear

within a few bounded unrolls – but Alive2 currently cannot

guarantee correctness even then, and this is likely to cause

practical impediments with loop-level analyses. This is not

a theoretical impediment – with support for loop induction,

or constraints over loop-format changes to make the problem

tractable, we expect soundness would improve.

VII. RELATED WORK

In recent years, there has been a growing interest in

leveraging Large Language Models (LLMs) for tasks involving

source code generation. Models such as Copilot [52], Codex

[53], TransCoder [54], CodeBERT [55], Code Llama [56],

StarCoder [57], [58], Magicoder [59] and DeepSeek-Coder [60]

have significantly advanced this field. These models support

developers with tasks like code completion, generation, and

translation across multiple programming languages.

InstCombine:

d e f i n e d s o l o c a l i 3 2 @f8 ( i 6 4

noundef %0) #0 {
%2 = l s h r i 6 4 %0, 61

%3 = trunc i 6 4 %2 to i 3 2

%4 = add nuw nsw i 3 2 %3, 1

r e t i 3 2 %4

}

LLM-VeriOpt:

d e f i n e d s o l o c a l i 3 2 @f8 ( i 6 4

noundef %0) #0 {
%2 = l s h r i 6 4 %0, 61

%3 = trunc i 6 4 %2 to i 1 6

%4 = s e x t i 1 6 %3 to i 3 2

%5 = add nsw i 3 2 %4, 1

%6 = trunc i 3 2 %5 to i 1 6

%7 = s e x t i 1 6 %6 to i 3 2

r e t i 3 2 %7

}

Fig. 11: InstCombine spots a superior simplification.

InstCombine:

d e f i n e d s o l o c a l i 3 2

@aqua baldo ( ) #0 {
r e t i 3 2 −159

}

LLM-VeriOpt:

d e f i n e d s o l o c a l i 3 2

@aqua baldo ( ) #0 {
%1 = srem i 3 2 160 , 11

%2 = sub nsw i 3 2 %1, 2

%3 = add nsw i 3 2 6 , %2

%4 = srem i 3 2 11 , %3

%5 = sub nsw i 3 2 1 , 160

%6 = srem i 3 2 %2, %4

%7 = add nsw i 3 2 %5, %6

r e t i 3 2 %7

}

Fig. 12: InstCombine fully precalculates.

Fewer models operate at the compiler level, particularly

with code generation and compiler optimization. Recent

studies have focused on traditional machine-learning methods

for compiler optimization [44], [61]–[67]. Neural machine

translation techiques have been employed to transform code

between different representations, previous examples include

compiling C to X86 assembly [8] and decompiling assembly

language to C [68], [69]. These works utilized smaller models

or other deep learning methods. There are a few works related to

using LLM at the compiler level. Examples include using large

models for decompilers [70]–[72], LLVM-IR passes prediction

with IR optimization [3], and fuzzing tests [73], [74].

VIII. CONCLUSION

In this paper, we present LLM-VERIOPT, a framework for

producing high-quality, accurate, and performant optimization

passes via LLMs. LLM-VERIOPT takes classification data

from a compiler pass it is trying to emulate, observes the

mistakes it makes in doing so, learns to diagnose these mistakes,

and ultimately corrects them. Through a hierarchy of models,

LLM-VERIOPT is able to transform the Qwen-3B LLM from

an 0.2% speedup to over 2.3×, by both vastly improving the

coverage of code by generating verifiably correct optimizations,

and also by improving the optimization of the code it covers by

generating high-quality transformations. We believe the three-

stage framework we provide here has significant potential in

facilitating the development of ever more ambitious LLM

compiler passes, which, when scaled up to larger models

and more ambitious training sets will allow consistent and

large improvements over handwritten compiler passes, as well

as generating code that is easy to verify with models such

as Alive2, sidestepping traditional LLM correctness barriers

completely.
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ARTIFACT APPENDIX

Artifact Abstract

This artifact is designed to run on a modern Linux envi-

ronment. It provides all trained models, datasets, inference

scripts, configuration files, and reproduction materials required

to replicate the results presented in the paper. It includes: (1)

all trained SFT, GRPO LoRA models; (2) all test datasets; (3) a

unified inference pipeline; (4) configuration files covering every

model variant; (5) scripts to reproduce the figures used in the

paper; (6) author-provided reference outputs for verification;

and (7) a complete summary table that aggregates each model’s

outputs across the full test set, including IR size, latency,

instruction count, and correctness metrics. reported in the paper

are generated directly from this summary table.

The artifact supports both full test-set evaluation

and lightweight sampling-based evaluation. We

strongly recommend using the sampling script

(run_inference_demo.sh) for practical evaluation

on commodity hardware. The full artifact, including

models, scripts, datasets, and reproducibility materials,

is publicly available on GitHub and Zenodo at

https://github.com/carrotProgrammer/llmveriopt-AE and

https://doi.org/10.5281/zenodo.17625555

1. Artifact Check List

• Models: All LoRA adapters included.

• Datasets: All test datasets included.

• Output data: Author-produced reference results in

reference_results/.

• Scripts: Sampling evaluation, full evaluation, and figure-

generation scripts provided.

• Hardware Requirements:

– Recommended: Nvidia GPU ≥ 32 GB for 7B/8B/32B

models.

– Minimum: Nvidia GPU ≥ 16 GB for 3B models.

– CPU execution is supported (with fallback if no

Nvidia GPU is detected), but extremely slow (may

take days).

• Software Requirements: Linux, Python 3.10, PyTorch,

Transformers, PEFT, datasets, YAML.

• Estimated Runtime: (The following runtime estimates

are based on measurements using an NVIDIA RTX 3090ti

GPU.)

– Sampling evaluation: 1hr. (10-16hr on CPU with

default LIMIT=32)

– Full evaluation for model latency 3b: 9–12h.

– Full 3B/7B/8B/32B evaluation with large-GPU sup-

port: multiple days.

• Archived: https://doi.org/10.5281/zenodo.17625555

2. Dependencies

All dependencies can be installed using:
p i p i n s t a l l − r r e q u i r e m e n t s . t x t

Key packages include: torch, transformers, peft,

datasets, pyyaml. All experiments were tested using the
package versions listed in requirements.txt, running on

Ubuntu 24.04. Other compatible versions may work but have

not been systematically evaluated.

Gated models provided by Meta (e.g., the Llama model

family) require HuggingFace authentication Evaluators must

first request access on the corresponding model card page, then

generate a personal access token on HuggingFace, and finally

authenticate locally using:
h u g g i n g f a c e − c l i l o g i n

By default, base models are accessed directly from Hugging-

Face. If network access to HuggingFace is unavailable, evalua-

tors may manually download the required models in advance

and update the base_model fields in all configuration files

to point to the corresponding local paths.

3. Installation and Directory Structure

The artifact consists of two components: (1) the main

repository hosted on GitHub, and (2) the evaluation dataset

hosted on Zenodo. Users must obtain both before running.

3.1 Obtaining the Artifact:

a) Main repository: The primary artifact repository,

including trained models, inference scripts, configuration files,

and figure-reproduction scripts, is available at:

https://github.com/carrotProgrammer/llmveriopt-AE

Users may clone it with:
g i t c l o n e h t t p s : / / g i t h u b . com / c a r r o t P r o g r a m m e r /

l l m v e r i o p t −AE
cd l l m v e r i o p t −AE

b) Evaluation dataset (Zenodo).: The evaluation dataset

required by the artifact is provided via Zenodo:

https://doi.org/10.5281/zenodo.17625556

After downloading llmveriopt-datasets.zip, ex-

tract it and place the resulting dataset/ directory directly

under the artifact root:
u n z i p l l m v e r i o p t − d a t a s e t s . z i p

l l m v e r i o p t −AE/
‘−− d a t a s e t /

‘−− <d a t a s e t f i l e s >

This directory contains all test IR programs, latency bench-

marks, and reference outputs used by the evaluation pipeline.

3.2 Directory Structure: After cloning the repository and

placing the dataset, the directory layout should be:
l l m v e r i o p t −AE/
|−− models / # LoRA a d a p t e r s and b a s e l i n e model

r e f e r e n c e s

|−− d a t a s e t / # E v a l u a t i o n d a t a s e t s ( from Zenodo )

|−− i n f e r e n c e /
| |− − r u n i n f e r e n c e d e m o . sh
| |− − r u n i n f e r e n c e a l l . sh
| |− − r u n m o d e l l a t e n c y . sh
| |− − o u t p u t / # E v a l u a t i o n l o g s and g e n e r a t e d

r e s u l t s

| |− − t o o l s / # A l i v e 2 b i n d i n g s and p r e b u i l t

LLVM sh are d l i b r a r i e s

| ‘−− c o n f i g s / * . yaml
|−− r e p r o d u c e f i g u r e s /
| |− − summary tab le /
| ‘−− r e p r o d u c e f i g u r e s . sh
|−− r e q u i r e m e n t s . t x t
‘−− README. md
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All LLVM shared libraries needed for Alive2 (e.g.,

libLLVM.so) are included in:

inference/tools/llvm-project/build/lib/

No additional compilation steps are required.

3.3 Dependencies: The artifact requires Python 3.10 or

newer. Install all Python dependencies via:
p i p i n s t a l l − r r e q u i r e m e n t s . t x t

Alive2 further requires the Z3 SMT solver. On De-

bian/Ubuntu:
sudo a p t u p d a t e
sudo a p t i n s t a l l z3 l i b z 3 −dev

If users wish to evaluate gated models (e.g., Llama-family

checkpoints), HuggingFace authentication is required:
h u g g i n g f a c e − c l i l o g i n

Hardware Notes: While CPU execution is supported, we

strongly recommend running on an NVIDIA GPU with at

least 16 GB of memory. If no GPU is detected, the scripts

automatically fall back to CPU mode.

Users may explicitly force CPU execution by clearing the

CUDA device list:
export CUDA VISIBLE DEVICES=” ”

or specify a particular GPU index if multiple devices exist.

4. Evaluation

4.1 Quick Functional Test (Recommended): A lightweight

sampling-based evaluation is provided to verify that model

inference, IR generation, and Alive2 verification all function

correctly. This mode uses a small subset of the dataset and

typically completes within minutes on commodity hardware.

To run the quick evaluation:
cd i n f e r e n c e
chmod +x r u n i n f e r e n c e d e m o . sh
. / r u n i n f e r e n c e d e m o . sh

Results are written to:
i n f e r e n c e / o u t p u t / n e w r e s u l t /

Each evaluated model generates:
<model name>/
|− − r e s u l t s . c sv # Per− f u n c t i o n e v a l u a t i o n

r e c o r d s

‘−− m e t r i c s . j s o n # Summary and c o r r e c t n e s s

m e t r i c s

A summary figure (summary.png) is produced and may

be compared against the reference file:
i n f e r e n c e / o u t p u t / r e f e r e n c e r e s u l t s / summary . png

This procedure validates that the full evaluation pipeline is

functioning correctly. We strongly encourage reviewers to

begin with this mode prior to running the full suite.

4.2 Full Reproduction (Not Recommended on Small GPUs):

To reproduce all results:
cd i n f e r e n c e
chmod +x r u n i n f e r e n c e a l l . sh
. / r u n i n f e r e n c e a l l . sh

This evaluates all models (3B/7B/8B/32B) on the full test sets

(up to 4386 samples). Warning: This requires an Nvidia GPU

with ≥32 GB memory. On smaller devices, inference fail due

to out of VRAM.

Note: this script performs inference only. It does not generate

metrics or summary figures.
4.3 Final Model Evaluation (model latency) - only: The

script run_model_latency.sh runs the full evaluation

for our final model, model_latency, which is the primary

model used to produce the main results reported in the paper.

This model achieves the best overall performance among

all evaluated variants, and is a subset of the experiments

implemented for the full reproduction. Since it only evaluates a

3B model, memory requirements are 16 GB instead of 32 GB.
cd i n f e r e n c e
chmod +x r u n m o d e l l a t e n c y . sh
. / r u n m o d e l l a t e n c y . sh

This script runs the full latency evaluation over the entire test

set and is computationally expensive. On an Nvidia RTX 3090

GPU, the expected runtime is approximately 9–12 hours.

Running the script on smaller GPUs may lead to out-of-memory

failures.

Note: This script reproduces the inference output for the

primary model (Model Latency) used in the paper. It does not

compute metrics/generate plots.

4.4 Experiment Modification: All three scripts above share

the same logic; they differ only in the model list and the LIMIT

settings. run_inference_all.sh runs all models (Meta +

Qwen) on the full test set, run_model_latency.sh runs

only the model_latency_3b configuration on the full test

set, and run_inference_demo.sh runs the 3B models

with a smaller, user-configurable sample limit. Reviewers may

adjust both the model list and the LIMIT directly in the relevant

.sh files.

5. Expected Results

Running the sampling script produces:

• CSV outputs under inference/output/new_

result/<model>/results.csv.

• Deterministic IR generation patterns for sampled tests.

Reviewers should compare:

inference/output/new_result/summary.png

against the reference version:

inference/output/reference_results/

summary.png

to confirm reproducibility of the evaluation pipeline.

All IR outputs, Alive2 verification logs, and detailed metrics

are stored under each <model_name> directory.

6. Notes for Evaluators

The artifact is compatible with any modern Linux system.

However, hardware with insufficient GPU memory will en-

counter out-of-memory errors when running larger models. We

recommend only running on CPUs (as described above) and

only running the functional tests if so, to limit compute time.

All scripts are deterministic because model generation uses

greedy decoding.
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